期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种有效深度哈希图像拷贝检测算法
1
作者 刘琴 袁家政 +3 位作者 刘宏哲 李兵 王佳颖 叶子 《计算机应用与软件》 北大核心 2020年第3期213-219,303,共8页
目前拷贝检测中的图像哈希方法由于手工设计特征和线性映射带来的限制,检测精度不高。为了解决这一难题,提出一种端到端的深度哈希拷贝检测算法——DHCD。构建多尺度孪生卷积神经网络,以空间金字塔分层池化的方式来获得图像对的显著性特... 目前拷贝检测中的图像哈希方法由于手工设计特征和线性映射带来的限制,检测精度不高。为了解决这一难题,提出一种端到端的深度哈希拷贝检测算法——DHCD。构建多尺度孪生卷积神经网络,以空间金字塔分层池化的方式来获得图像对的显著性特征;在新设计的哈希损失函数作用下,既保持了特征在语义结构上的相关性,又使得特征输出接近于目标哈希码;通过挖掘难分样本,[JP2]对难分样本再训练,提升了模型的识别效果。在拷贝数据集上的实验结果表明,该算法与当前主流的图像哈希算法相比,准确率提升了10%左右,且效率没有降低。 展开更多
关键词 拷贝检测 深度哈希 多尺度 哈希损失 挖掘难分样本
下载PDF
结合Transformer与非对称学习策略的图像检索 被引量:5
2
作者 贺超 魏宏喜 《中国图象图形学报》 CSCD 北大核心 2023年第2期535-544,共10页
目的图像检索是计算机视觉领域的一项基础任务,大多采用卷积神经网络和对称式学习策略,导致所需训练数据量大、模型训练时间长、监督信息利用不充分。针对上述问题,本文提出一种Transformer与非对称学习策略相结合的图像检索方法。方法... 目的图像检索是计算机视觉领域的一项基础任务,大多采用卷积神经网络和对称式学习策略,导致所需训练数据量大、模型训练时间长、监督信息利用不充分。针对上述问题,本文提出一种Transformer与非对称学习策略相结合的图像检索方法。方法对于查询图像,使用Transformer生成图像的哈希表示,利用哈希损失学习哈希函数,使图像的哈希表示更加真实。对于待检索图像,采用非对称式学习策略,直接得到图像的哈希表示,并将哈希损失与分类损失相结合,充分利用监督信息,提高训练速度。在哈希空间通过计算汉明距离实现相似图像的快速检索。结果在CIFAR-10和NUS-WIDE两个数据集上,将本文方法与主流的5种对称式方法和性能最优的两种非对称式方法进行比较,本文方法的mAP(mean average precision)比当前最优方法分别提升了5.06%和4.17%。结论本文方法利用Transformer提取图像特征,并将哈希损失与分类损失相结合,在不增加训练数据量的前提下,减少了模型训练时间。所提方法性能优于当前同类方法,能够有效完成图像检索任务。 展开更多
关键词 图像检索 TRANSFORMER 哈希函数 非对称式学习 哈希损失 分类损失
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部