目的图像检索是计算机视觉领域的一项基础任务,大多采用卷积神经网络和对称式学习策略,导致所需训练数据量大、模型训练时间长、监督信息利用不充分。针对上述问题,本文提出一种Transformer与非对称学习策略相结合的图像检索方法。方法...目的图像检索是计算机视觉领域的一项基础任务,大多采用卷积神经网络和对称式学习策略,导致所需训练数据量大、模型训练时间长、监督信息利用不充分。针对上述问题,本文提出一种Transformer与非对称学习策略相结合的图像检索方法。方法对于查询图像,使用Transformer生成图像的哈希表示,利用哈希损失学习哈希函数,使图像的哈希表示更加真实。对于待检索图像,采用非对称式学习策略,直接得到图像的哈希表示,并将哈希损失与分类损失相结合,充分利用监督信息,提高训练速度。在哈希空间通过计算汉明距离实现相似图像的快速检索。结果在CIFAR-10和NUS-WIDE两个数据集上,将本文方法与主流的5种对称式方法和性能最优的两种非对称式方法进行比较,本文方法的mAP(mean average precision)比当前最优方法分别提升了5.06%和4.17%。结论本文方法利用Transformer提取图像特征,并将哈希损失与分类损失相结合,在不增加训练数据量的前提下,减少了模型训练时间。所提方法性能优于当前同类方法,能够有效完成图像检索任务。展开更多
文摘目的图像检索是计算机视觉领域的一项基础任务,大多采用卷积神经网络和对称式学习策略,导致所需训练数据量大、模型训练时间长、监督信息利用不充分。针对上述问题,本文提出一种Transformer与非对称学习策略相结合的图像检索方法。方法对于查询图像,使用Transformer生成图像的哈希表示,利用哈希损失学习哈希函数,使图像的哈希表示更加真实。对于待检索图像,采用非对称式学习策略,直接得到图像的哈希表示,并将哈希损失与分类损失相结合,充分利用监督信息,提高训练速度。在哈希空间通过计算汉明距离实现相似图像的快速检索。结果在CIFAR-10和NUS-WIDE两个数据集上,将本文方法与主流的5种对称式方法和性能最优的两种非对称式方法进行比较,本文方法的mAP(mean average precision)比当前最优方法分别提升了5.06%和4.17%。结论本文方法利用Transformer提取图像特征,并将哈希损失与分类损失相结合,在不增加训练数据量的前提下,减少了模型训练时间。所提方法性能优于当前同类方法,能够有效完成图像检索任务。