The elemental micro-segregation characteristic within the weld zone for ytterbium fiber laser welded Hastelloy C-276sheet was investigated. The analysis of segregation ratio and equilibrium distribution coefficient of...The elemental micro-segregation characteristic within the weld zone for ytterbium fiber laser welded Hastelloy C-276sheet was investigated. The analysis of segregation ratio and equilibrium distribution coefficient of elements, determined throughEDS data, indicate the reduction in micro-segregation of elements compared with the previous reported literatures for laser weldedHastelloy C-276. High melting efficiency of ytterbium fiber laser, reduction in the amount of linear heat input, and high cooling rateof the mushy zone lead to the reduction in micro-segregation. The melting efficiency of ytterbium fiber laser for welding of HastelloyC-276 of 64% is higher than that (48%) of conventional welding methods. High melting efficiency leads to the reduction in the linearheat input required for welding. Hence, in the present investigation, the same was found to substantially reduce as compared to theprevious reported literature. The cooling rate from liquidus temperature to solidus temperature at the weld centerline was found to bein the order of 10^3℃/s. Cellular dendritic substructure that constituted for lower micro-segregation was formed at the weldcenterline.展开更多
To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s...To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s^−1,respectively.Based on the modified Zerilli−Armstrong,modified Johnson-Cook,and strain-compensated Arrheniustype models,three constitutive equations were established to describe the high-temperature flow stress of this alloy.Meanwhile,the predictability of the obtained models was evaluated by the calculation of correlation coefficients(r)and absolute errors(Δ),where the values of r for the modified Zerilli−Armstrong,Johnson−Cook,and Arrhenius-type constitutive models were computed to be 0.935,0.968 and 0.984,and the values ofΔwere calculated to be 13.4%,10.5%and 6.7%,respectively.Moreover,the experimental and predicted flow stresses were compared in the strain range of 0.1−0.5,the results further indicated that the obtained modified Arrhenius-type model possessed better predictability on hot flow behavior of Hastelloy C-276.展开更多
文摘The elemental micro-segregation characteristic within the weld zone for ytterbium fiber laser welded Hastelloy C-276sheet was investigated. The analysis of segregation ratio and equilibrium distribution coefficient of elements, determined throughEDS data, indicate the reduction in micro-segregation of elements compared with the previous reported literatures for laser weldedHastelloy C-276. High melting efficiency of ytterbium fiber laser, reduction in the amount of linear heat input, and high cooling rateof the mushy zone lead to the reduction in micro-segregation. The melting efficiency of ytterbium fiber laser for welding of HastelloyC-276 of 64% is higher than that (48%) of conventional welding methods. High melting efficiency leads to the reduction in the linearheat input required for welding. Hence, in the present investigation, the same was found to substantially reduce as compared to theprevious reported literature. The cooling rate from liquidus temperature to solidus temperature at the weld centerline was found to bein the order of 10^3℃/s. Cellular dendritic substructure that constituted for lower micro-segregation was formed at the weldcenterline.
基金Project(ZZYJKT2018-06)supported by the State Key Laboratory of High Performance Complex Manufacturing of Central South University,ChinaProject(2019zzts525)supported by the Fundamental Research Funds for the Central Universities of Central South University of China。
文摘To better understand the hot deformation behaviors of Hastelloy C-276 alloy under elevated temperatures,hot tensile tests were carried out in the temperature range of 1223−1423 K and the strain rate range of 0.01−10 s^−1,respectively.Based on the modified Zerilli−Armstrong,modified Johnson-Cook,and strain-compensated Arrheniustype models,three constitutive equations were established to describe the high-temperature flow stress of this alloy.Meanwhile,the predictability of the obtained models was evaluated by the calculation of correlation coefficients(r)and absolute errors(Δ),where the values of r for the modified Zerilli−Armstrong,Johnson−Cook,and Arrhenius-type constitutive models were computed to be 0.935,0.968 and 0.984,and the values ofΔwere calculated to be 13.4%,10.5%and 6.7%,respectively.Moreover,the experimental and predicted flow stresses were compared in the strain range of 0.1−0.5,the results further indicated that the obtained modified Arrhenius-type model possessed better predictability on hot flow behavior of Hastelloy C-276.