在全球变暖的背景下,干旱事件发生频率和强度的增加导致陆地生态系统中植被多样性发生重大变化,研究植被物候对季节性干旱的响应对保护黄土高原的生态系统具有重要意义。基于MODIS遥感归一化植被指数(MODIS NDVI:MOD13Q1)数据及降水和...在全球变暖的背景下,干旱事件发生频率和强度的增加导致陆地生态系统中植被多样性发生重大变化,研究植被物候对季节性干旱的响应对保护黄土高原的生态系统具有重要意义。基于MODIS遥感归一化植被指数(MODIS NDVI:MOD13Q1)数据及降水和气温逐月格点数据,采用岭回归分析方法,探讨黄土高原植被物候对季节性干旱的敏感性响应。结果表明:(1)上年夏季干旱指数(Standardized precipitation evapotranspiration index,SPEI)和上年秋季SPEI会延迟植被生长季始期(Start of the season,SOS),年初冬季SPEI和当年春季SPEI导致植被SOS提前。年初冬季SPEI相比于当年春季SPEI和当年秋季SPEI更容易延迟植被生长季末期(End of the season,EOS),而当年夏季SPEI会导致植被EOS提前。(2)黄土高原植被物候对季节性SPEI具有明显的空间异质性。青海境内年初冬季干旱程度减弱时,会造成植被SOS提前;当年夏季干旱程度加剧会导致黄土高原大部分植被提前结束生长。(3)黄土高原不同植被物候对季节性SPEI响应差异明显,灌木SOS相比于森林SOS和草地SOS更容易受干旱的影响,草地SOS最易受年初冬季干旱的影响。该研究可为黄土高原植被应对季节性干旱提供一定的科学依据。展开更多
The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, ...The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part.展开更多
An innovative approach for the identification of cracks from the dynamic responses of girder bridges was proposed.One of the key steps of the approach was to transform the dynamical responses into the equivalent stati...An innovative approach for the identification of cracks from the dynamic responses of girder bridges was proposed.One of the key steps of the approach was to transform the dynamical responses into the equivalent static quantities by integrating the excitation and response signals over time.A sliding-window least-squares curve fitting technique was then utilized to fit a cubic curve for a short segment of the girder.The moment coefficient of the cubic curve can be used to detect the locations of multiple cracks along a girder bridge.To validate the proposed method,prismatic girder bridges with multiple cracks of various depths were analyzed.Sensitivity analysis was conducted on various effects of crack depth,moving window width,noise level,bridge discretization,and load condition.Numerical results demonstrate that the proposed method can accurately detect cracks in a simply-supported or continuous girder bridges,the five-point equally weighted algorithm is recommended for practical applications,the spacing of two discernable cracks is equal to the window length,and the identified results are insensitive to noise due to integration of the initial data.展开更多
Zinc oxide uniform nanostructures with novel morphologies were synthesized through simple and fast ammonia based controlled precipitation method in aqueous media and in the absence of any additive. Selected batches of...Zinc oxide uniform nanostructures with novel morphologies were synthesized through simple and fast ammonia based controlled precipitation method in aqueous media and in the absence of any additive. Selected batches of the synthesized solids were characterized by SEM, XRD, FTIR and TG/DTA. FTIR analysis revealed that the morphology of nanostructures had little effect on their IR spectral profile of the synthesized material. The as-prepared, calcined and commercial ZnO nanostructures (ZnO-AP, ZnO-Cal and ZnO-Com) were then employed as gas sensors for the detection of ammonia, acetone and ethanol. ZnO-AP and ZnO-Cal based sensors showed superior and reproducible performance towards 1×10^-6 ammonia with gas response of 63.79% and 66.87% and response/recovery time of 13 and 3 s, respectively, at room temperature (29℃). This was attributed to the unique morphology and remarkable uniformity in shape and size of the synthesized nanostructures. In contrast, the ZnO-Com based sensor did not respond to ammonia concentration less than 200×10^-6. In addition, ZnO-Cal showed high selectivity to ammonia as compared to acetone and ethanol at room temperature. Moreover, the lowest detection limit was 1×10^-6, which demonstrates excellent ammonia sensing characteristics of the synthesized ZnO.展开更多
文摘在全球变暖的背景下,干旱事件发生频率和强度的增加导致陆地生态系统中植被多样性发生重大变化,研究植被物候对季节性干旱的响应对保护黄土高原的生态系统具有重要意义。基于MODIS遥感归一化植被指数(MODIS NDVI:MOD13Q1)数据及降水和气温逐月格点数据,采用岭回归分析方法,探讨黄土高原植被物候对季节性干旱的敏感性响应。结果表明:(1)上年夏季干旱指数(Standardized precipitation evapotranspiration index,SPEI)和上年秋季SPEI会延迟植被生长季始期(Start of the season,SOS),年初冬季SPEI和当年春季SPEI导致植被SOS提前。年初冬季SPEI相比于当年春季SPEI和当年秋季SPEI更容易延迟植被生长季末期(End of the season,EOS),而当年夏季SPEI会导致植被EOS提前。(2)黄土高原植被物候对季节性SPEI具有明显的空间异质性。青海境内年初冬季干旱程度减弱时,会造成植被SOS提前;当年夏季干旱程度加剧会导致黄土高原大部分植被提前结束生长。(3)黄土高原不同植被物候对季节性SPEI响应差异明显,灌木SOS相比于森林SOS和草地SOS更容易受干旱的影响,草地SOS最易受年初冬季干旱的影响。该研究可为黄土高原植被应对季节性干旱提供一定的科学依据。
基金Project(51408066)supported by the National Natural Science Foundation of China
文摘The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part.
基金Projects(51208165,51078357)supported by the National Natural Science Foundation of China
文摘An innovative approach for the identification of cracks from the dynamic responses of girder bridges was proposed.One of the key steps of the approach was to transform the dynamical responses into the equivalent static quantities by integrating the excitation and response signals over time.A sliding-window least-squares curve fitting technique was then utilized to fit a cubic curve for a short segment of the girder.The moment coefficient of the cubic curve can be used to detect the locations of multiple cracks along a girder bridge.To validate the proposed method,prismatic girder bridges with multiple cracks of various depths were analyzed.Sensitivity analysis was conducted on various effects of crack depth,moving window width,noise level,bridge discretization,and load condition.Numerical results demonstrate that the proposed method can accurately detect cracks in a simply-supported or continuous girder bridges,the five-point equally weighted algorithm is recommended for practical applications,the spacing of two discernable cracks is equal to the window length,and the identified results are insensitive to noise due to integration of the initial data.
文摘Zinc oxide uniform nanostructures with novel morphologies were synthesized through simple and fast ammonia based controlled precipitation method in aqueous media and in the absence of any additive. Selected batches of the synthesized solids were characterized by SEM, XRD, FTIR and TG/DTA. FTIR analysis revealed that the morphology of nanostructures had little effect on their IR spectral profile of the synthesized material. The as-prepared, calcined and commercial ZnO nanostructures (ZnO-AP, ZnO-Cal and ZnO-Com) were then employed as gas sensors for the detection of ammonia, acetone and ethanol. ZnO-AP and ZnO-Cal based sensors showed superior and reproducible performance towards 1×10^-6 ammonia with gas response of 63.79% and 66.87% and response/recovery time of 13 and 3 s, respectively, at room temperature (29℃). This was attributed to the unique morphology and remarkable uniformity in shape and size of the synthesized nanostructures. In contrast, the ZnO-Com based sensor did not respond to ammonia concentration less than 200×10^-6. In addition, ZnO-Cal showed high selectivity to ammonia as compared to acetone and ethanol at room temperature. Moreover, the lowest detection limit was 1×10^-6, which demonstrates excellent ammonia sensing characteristics of the synthesized ZnO.