Pyropia yezoensis, belongs to the genus of P orphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh env...Pyropia yezoensis, belongs to the genus of P orphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh environment. Based on the photosynthetic parameters with or without the inhibitors determined by a Dual-PAM-100 apparatus, we investigated the photosynthetic performance and the changes in electron fl ow that occurred during the algae were stressed with dif ferent light intensities previously. When the irradiation saturation was approaching, the CEF around PS I became crucial since the addition of inhibitors usually led to an increase in non-photochemical quenching. The inhibitor experiments showed that there were at least three dif ferent CEF pathways in Py. yezoensis and these pathways compensated each other. In addition to maintaining a proper ratio of ATP/NAD(P)H to support effi cient photosynthesis, the potential roles of CEF might also include the regulation of dif ferent photoprotective mechanisms in Py. yezoensis. Under the regulation of CEF, chlororespiration is thought to transport electrons from the reduced plastoquinone(PQ) pool to oxygen in order to mitigate the reduction in the electron transfer chain. When irradiation was up to the high-grade stress conditions, the relative value of CEF began to decrease, which implied that the NADP+ pool or PQ + pool was very small and that the electrons were transferred from reduced PS I to oxygen. The scavenging enzymes might be activated and the water-water cycle probably became an ef fective means of removing the active oxygen produced by the irradiation stressed Py. yezoensis. We believe that the dif ferent mechanisms could make up the photoprotective network to allow Py. yezoensis for survival in a highly variable light stress habitat, which may enlighten scientists in future studies on irradiance stress in other algae species.展开更多
Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structura...Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structural unsafety. It is necessary to predict wind-induced vibration response and find out a method to mitigate such an excessive wind-induced vibration at the preliminary design stage. Recently, many studies have been conducted in using actuator control force based on the linear quadratic optimum control algorithm. It was accepted as a common knowledge that the performance of passive tuned mass damper(TMD) could increase by incorporating a feedback active control force in the design of TMD, which is called active tuned mass damper(ATMD). However, the fact that ATMD is superior to TMD to reduce wind-induced vibration of a tall building is still a question. The effectiveness of TMD for mitigating the along-wind vibration of a tall building was investigated. Optimum parameters of tuning frequency and damping ratio for TMD under a random load which has a white noise spectra were used. Fluctuating along-wind load acting on a tall building treated as a stationary Gaussian random process was simulated numerically using the along-wind load spectra. And using this simulated along-wind load, along-wind responses of a tall building with and without TMD were calculated and the effectiveness of TMD in mitigating the along-wind response of a tall building was found out.展开更多
Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling...Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.展开更多
Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tet...Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tetraphenylethylene derivatives(TPEC).The three-dimensional layered SOFs could be constructed from the further stacking of two-dimensional mono-layered structures via simply regulating the self-assembly conditions including the culturing time and concentration.Upon light irradiation under the wavelength of 365 nm,the photodimerization of coumarin moieties occurred,which resulted in the transformation of the resultant TPECn/CB[8]4n two-dimensional SOFs into robust covalently-connected 2D polymers with molecular thickness.Interestingly,the supramolecular system of TPEC/CB[8]exhibited intriguing multicolor fluorescence emission from yellow to blue in the time range of 0-24 h at 365 nm irradiation,possessing potential applicability for photochromic fluorescence ink.展开更多
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,and 61974152)the National Key Research and Development Program of China(2016YFB0402403)+2 种基金the Youth Innovation Promotion Association,CAS(2016219)the Innovation Engineering Frontier Program of SITP,CAS(233)the Fund of Shanghai Science and Technology Foundation(16JC1400403).
基金Supported by the National Natural Science Foundation of China(No.41176134)the Laboratory for Marine Biology and Biotechnology,Qingdao National Laboratory for Marine Science and Technology,the Prospective Joint Research Project of Jiangsu Province(No.BY2011188)+1 种基金the National Basic Research Program of China(973 Program)(No.2011CB411908)the National Marine Public Welfare Research Project(Nos.201105023-8,201105008-2)
文摘Pyropia yezoensis, belongs to the genus of P orphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh environment. Based on the photosynthetic parameters with or without the inhibitors determined by a Dual-PAM-100 apparatus, we investigated the photosynthetic performance and the changes in electron fl ow that occurred during the algae were stressed with dif ferent light intensities previously. When the irradiation saturation was approaching, the CEF around PS I became crucial since the addition of inhibitors usually led to an increase in non-photochemical quenching. The inhibitor experiments showed that there were at least three dif ferent CEF pathways in Py. yezoensis and these pathways compensated each other. In addition to maintaining a proper ratio of ATP/NAD(P)H to support effi cient photosynthesis, the potential roles of CEF might also include the regulation of dif ferent photoprotective mechanisms in Py. yezoensis. Under the regulation of CEF, chlororespiration is thought to transport electrons from the reduced plastoquinone(PQ) pool to oxygen in order to mitigate the reduction in the electron transfer chain. When irradiation was up to the high-grade stress conditions, the relative value of CEF began to decrease, which implied that the NADP+ pool or PQ + pool was very small and that the electrons were transferred from reduced PS I to oxygen. The scavenging enzymes might be activated and the water-water cycle probably became an ef fective means of removing the active oxygen produced by the irradiation stressed Py. yezoensis. We believe that the dif ferent mechanisms could make up the photoprotective network to allow Py. yezoensis for survival in a highly variable light stress habitat, which may enlighten scientists in future studies on irradiance stress in other algae species.
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structural unsafety. It is necessary to predict wind-induced vibration response and find out a method to mitigate such an excessive wind-induced vibration at the preliminary design stage. Recently, many studies have been conducted in using actuator control force based on the linear quadratic optimum control algorithm. It was accepted as a common knowledge that the performance of passive tuned mass damper(TMD) could increase by incorporating a feedback active control force in the design of TMD, which is called active tuned mass damper(ATMD). However, the fact that ATMD is superior to TMD to reduce wind-induced vibration of a tall building is still a question. The effectiveness of TMD for mitigating the along-wind vibration of a tall building was investigated. Optimum parameters of tuning frequency and damping ratio for TMD under a random load which has a white noise spectra were used. Fluctuating along-wind load acting on a tall building treated as a stationary Gaussian random process was simulated numerically using the along-wind load spectra. And using this simulated along-wind load, along-wind responses of a tall building with and without TMD were calculated and the effectiveness of TMD in mitigating the along-wind response of a tall building was found out.
基金Work supported by the Lancaster University,UK and Jiangsu Provincial Laboratory of Advanced Robotics,SooChow University,ChinaProject(BK2009509) supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(K5117827) supported by the Scientific Research Foundation for the Returned Scholars,Ministry of Education of ChinaProject(Q3117918) supported by the Scientific Research Foundation for Young Teachers of Soochow University,China
文摘Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.
基金supported by Anhui Province Natural Science Funds(2008085QE209)K2020-03 from the State Key Laboratory of Molecular Engineering of Polymers(Fudan University)。
文摘Dimension-controllable supramolecular organic frameworks(SOFs)with aggregation-enhanced fluorescence are hierarchically fabricated through the host-guest interactions of cucurbit[8]uril(CB[8])and coumarin-modified tetraphenylethylene derivatives(TPEC).The three-dimensional layered SOFs could be constructed from the further stacking of two-dimensional mono-layered structures via simply regulating the self-assembly conditions including the culturing time and concentration.Upon light irradiation under the wavelength of 365 nm,the photodimerization of coumarin moieties occurred,which resulted in the transformation of the resultant TPECn/CB[8]4n two-dimensional SOFs into robust covalently-connected 2D polymers with molecular thickness.Interestingly,the supramolecular system of TPEC/CB[8]exhibited intriguing multicolor fluorescence emission from yellow to blue in the time range of 0-24 h at 365 nm irradiation,possessing potential applicability for photochromic fluorescence ink.