In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a func...In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.展开更多
基金supported by the Chinese Natural Science Foundation Project (Grant No. 30970784 and 81171455)a National Distinguished Young Scholars Grant (Grant No. 31225009) from the National Natural Science Foundation of China+5 种基金the National Key Basic Research Program of China (Grant No. 2009CB930200)the Chinese Academy of Sciences (CAS) ‘Hundred Talents Program’ (Grant No. 07165111ZX)the CAS Knowledge Innovation Program, and the State HighTech Development Plan (Grant No. 2012AA020804)the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (Grant No. XDA09030301)NIH/NIMHD 8 G12 MD007597USAMRMC W81XWH-10-1-0767 grants
文摘In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.