本文给出方程■=φ(y)-F(x),■=-g(x)至多存在和恰好存在 n 个极限环的条件.与文的著名结果(φ(y)≡y)不同,我们采用了不同的方法,不要求{[F(x)-F(b_j)]f(x)}/[g(x)],g(x)在有关区间单调;当φ(y)(?)y 时放弃了文[8][9]有关φ′(y)单调...本文给出方程■=φ(y)-F(x),■=-g(x)至多存在和恰好存在 n 个极限环的条件.与文的著名结果(φ(y)≡y)不同,我们采用了不同的方法,不要求{[F(x)-F(b_j)]f(x)}/[g(x)],g(x)在有关区间单调;当φ(y)(?)y 时放弃了文[8][9]有关φ′(y)单调日限制,而所补充的条件推广和改进了文[5][6](p^(158))[7](p^(349))相应的结果.展开更多
In this paper, we consider the problem of the uniqueness for meromorphic functions whose n-th derivatives share the same 1-points. The results in this paper are different from all of theorems given by H X Yi and C C Y...In this paper, we consider the problem of the uniqueness for meromorphic functions whose n-th derivatives share the same 1-points. The results in this paper are different from all of theorems given by H X Yi and C C Yang and other authors.展开更多
On some necessary conditions for double pyramidal central configurations with concave heptagon for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configurations with con...On some necessary conditions for double pyramidal central configurations with concave heptagon for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configurations with concave heptagon base for nine-body problems is proved in this paper, and the range of the ratio cr of the circularity radius of the heptagon to the half-height of the double pyramidal central configuration involved in this class configurations is obtained, which is in the interval (√3/3,1.099 600 679), and the configuration involved in the bodies with any σ∈ (√3/3, 1.099 600 679) can form a central configuration which is a uniquely central configuration is proved.展开更多
文摘本文给出方程■=φ(y)-F(x),■=-g(x)至多存在和恰好存在 n 个极限环的条件.与文的著名结果(φ(y)≡y)不同,我们采用了不同的方法,不要求{[F(x)-F(b_j)]f(x)}/[g(x)],g(x)在有关区间单调;当φ(y)(?)y 时放弃了文[8][9]有关φ′(y)单调日限制,而所补充的条件推广和改进了文[5][6](p^(158))[7](p^(349))相应的结果.
基金Foundation item: Supported by the NSF of China(10471028)Supported by the NSF of Guangdong Province(020586) Supported by the Guangzhou Education Bureau(2006, 2025)Supported by the Grant-in-Aid for Scientific Research 2004(15540151)Supported by the Japan Society for the Promotion of Science
文摘In this paper, we consider the problem of the uniqueness for meromorphic functions whose n-th derivatives share the same 1-points. The results in this paper are different from all of theorems given by H X Yi and C C Yang and other authors.
基金Funded by NSF (Natural Science Foundation) of China (No. 10231010) and NSF of Chongqing Educational Committee (KJ051109, KJ06110X), NSF of Chongqing Science and Technology Committee, NSF of CQSXXY
文摘On some necessary conditions for double pyramidal central configurations with concave heptagon for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configurations with concave heptagon base for nine-body problems is proved in this paper, and the range of the ratio cr of the circularity radius of the heptagon to the half-height of the double pyramidal central configuration involved in this class configurations is obtained, which is in the interval (√3/3,1.099 600 679), and the configuration involved in the bodies with any σ∈ (√3/3, 1.099 600 679) can form a central configuration which is a uniquely central configuration is proved.