In the past several decades,SINOPEC has devoted continuously great efforts to the development of DCC technology,the only commercial process using heavy feeds aiming at propylene production.Recently,a series of researc...In the past several decades,SINOPEC has devoted continuously great efforts to the development of DCC technology,the only commercial process using heavy feeds aiming at propylene production.Recently,a series of research breakthroughs have been achieved in molecular refining.Based on the detailed analysis on the complex DCC reaction network,an innovative catalyst technology has been developed to Optimize Catalysis Kinetics (OCK in brief).The deep-cracking process can be improved with optimizing the availability of the active sites.The updated MFI and beta zeolites are used to boost the propylene selectivity.The latest generation catalyst DMMC-1 has been applied commercially.Compared with the best historical records in the past,the propylene yield upon application of the catalyst DMMC-1 increases by 2.4 m% coupled with an improved distribution of products.The DCC technology continues to assume a leading position for manufacturing propylene from heavy feedstocks.展开更多
Phlebiopsis gigantea strains registered in the European Union as biocontrol agents against root rot in forests (four from Great Britain and two from Finland) were compared using Ward's method with reference to: (...Phlebiopsis gigantea strains registered in the European Union as biocontrol agents against root rot in forests (four from Great Britain and two from Finland) were compared using Ward's method with reference to: (l) similarity of DNA-random amplified microsatellite (RAMS) ladders, (2) cellulase and peroxidase production and (3) acceleration of dry mass wood loss in Norway spruce The activity of the enzymes was tested in the initial phase of wood decay (30 d after inoculation) and indicated as the most active isolates: VFI0 and FCl5 for cellulase and FC16 and VFI0 for peroxidase production. The assessment of loss of wood six months after inoculation indicated isolate FC 15 as the most active. P. gigantea isolates similar in terms of enzyme activity indicated different patterns ofDNA microsatellite loci. At the same time, DNA-RAMS revealed similarities in isolates with different abilities to produce enzymes. However, some similarities and differences between isolates according to wood decay were found. No plain relationships between molecular characteristics and enzyme activity of the strains tested were observed. The results differentiated activity of tested isolates and suggested benefits of selecting P. gigantea strains for commercial use basing mainly on the assessment of wood loss activity.展开更多
文摘In the past several decades,SINOPEC has devoted continuously great efforts to the development of DCC technology,the only commercial process using heavy feeds aiming at propylene production.Recently,a series of research breakthroughs have been achieved in molecular refining.Based on the detailed analysis on the complex DCC reaction network,an innovative catalyst technology has been developed to Optimize Catalysis Kinetics (OCK in brief).The deep-cracking process can be improved with optimizing the availability of the active sites.The updated MFI and beta zeolites are used to boost the propylene selectivity.The latest generation catalyst DMMC-1 has been applied commercially.Compared with the best historical records in the past,the propylene yield upon application of the catalyst DMMC-1 increases by 2.4 m% coupled with an improved distribution of products.The DCC technology continues to assume a leading position for manufacturing propylene from heavy feedstocks.
文摘Phlebiopsis gigantea strains registered in the European Union as biocontrol agents against root rot in forests (four from Great Britain and two from Finland) were compared using Ward's method with reference to: (l) similarity of DNA-random amplified microsatellite (RAMS) ladders, (2) cellulase and peroxidase production and (3) acceleration of dry mass wood loss in Norway spruce The activity of the enzymes was tested in the initial phase of wood decay (30 d after inoculation) and indicated as the most active isolates: VFI0 and FCl5 for cellulase and FC16 and VFI0 for peroxidase production. The assessment of loss of wood six months after inoculation indicated isolate FC 15 as the most active. P. gigantea isolates similar in terms of enzyme activity indicated different patterns ofDNA microsatellite loci. At the same time, DNA-RAMS revealed similarities in isolates with different abilities to produce enzymes. However, some similarities and differences between isolates according to wood decay were found. No plain relationships between molecular characteristics and enzyme activity of the strains tested were observed. The results differentiated activity of tested isolates and suggested benefits of selecting P. gigantea strains for commercial use basing mainly on the assessment of wood loss activity.