Granular computing is a very hot research field in recent years. In our previous work an algebraic quotient space model was proposed,where the quotient structure could not be deduced if the granulation was based on an...Granular computing is a very hot research field in recent years. In our previous work an algebraic quotient space model was proposed,where the quotient structure could not be deduced if the granulation was based on an equivalence relation. In this paper,definitions were given and formulas of the lower quotient congruence and upper quotient congruence were calculated to roughly represent the quotient structure. Then the accuracy and roughness were defined to measure the quotient structure in quantification. Finally,a numerical example was given to demonstrate that the rough representation and measuring methods are efficient and applicable. The work has greatly enriched the algebraic quotient space model and granular computing theory.展开更多
The main theme of this paper is to consider a notion of 'approximately unital operator systems' including both C*-algebras and unital operator systems.The goals are to prove a version of the Choi-Effros theore...The main theme of this paper is to consider a notion of 'approximately unital operator systems' including both C*-algebras and unital operator systems.The goals are to prove a version of the Choi-Effros theorem for these systems,to introduce a functorial process for forming an approximately unital operator systems from a given matrix ordered vector space with a proper approximate order unit,to study second duals of these objects and to prove that a C*-algebra can be characterized as an approximately unital operator system that is also an approximately unital matrix ordered *-algebra.展开更多
基金Supported by the National Natural Science Foundation of China(No.61772031)the Special Energy Saving Foundation of Changsha,Hunan Province in 2017
文摘Granular computing is a very hot research field in recent years. In our previous work an algebraic quotient space model was proposed,where the quotient structure could not be deduced if the granulation was based on an equivalence relation. In this paper,definitions were given and formulas of the lower quotient congruence and upper quotient congruence were calculated to roughly represent the quotient structure. Then the accuracy and roughness were defined to measure the quotient structure in quantification. Finally,a numerical example was given to demonstrate that the rough representation and measuring methods are efficient and applicable. The work has greatly enriched the algebraic quotient space model and granular computing theory.
文摘The main theme of this paper is to consider a notion of 'approximately unital operator systems' including both C*-algebras and unital operator systems.The goals are to prove a version of the Choi-Effros theorem for these systems,to introduce a functorial process for forming an approximately unital operator systems from a given matrix ordered vector space with a proper approximate order unit,to study second duals of these objects and to prove that a C*-algebra can be characterized as an approximately unital operator system that is also an approximately unital matrix ordered *-algebra.