文章基于深度学习方法,通过结合粒子群优化(Particle Swarm Optimization,PSO)和长短期记忆(Long Short Term Memory,LSTM)网络,提出了一种针对大数据的商品销售预测模型。文章首先分析了LSTM的结构,其次分析了PSO方法对LSTM的优化方式...文章基于深度学习方法,通过结合粒子群优化(Particle Swarm Optimization,PSO)和长短期记忆(Long Short Term Memory,LSTM)网络,提出了一种针对大数据的商品销售预测模型。文章首先分析了LSTM的结构,其次分析了PSO方法对LSTM的优化方式,提出了PSO-LSTM商品销量预测模型,最后使用Kaggle上的数据集进行训练和测试。将所提出的模型与标准LSTM模型进行比较,结果表明,所提方法的预测精度和稳定性均优于标准LSTM方法。展开更多
文摘文章基于深度学习方法,通过结合粒子群优化(Particle Swarm Optimization,PSO)和长短期记忆(Long Short Term Memory,LSTM)网络,提出了一种针对大数据的商品销售预测模型。文章首先分析了LSTM的结构,其次分析了PSO方法对LSTM的优化方式,提出了PSO-LSTM商品销量预测模型,最后使用Kaggle上的数据集进行训练和测试。将所提出的模型与标准LSTM模型进行比较,结果表明,所提方法的预测精度和稳定性均优于标准LSTM方法。