In this paper, we study the convergence rate of two-dimensional Baakakov operators with Jacobi-weights and the approximation equivalence theorem is obtained, making use of multivariate decompose skills and results of ...In this paper, we study the convergence rate of two-dimensional Baakakov operators with Jacobi-weights and the approximation equivalence theorem is obtained, making use of multivariate decompose skills and results of one-dimensional Baskakov operators.展开更多
In this paper,we consider a new algorithm for a generalized system for relaxed coercive nonlinear inequalities involving three different operators in Hilbert spaces by the convergence of projection methods.Our results...In this paper,we consider a new algorithm for a generalized system for relaxed coercive nonlinear inequalities involving three different operators in Hilbert spaces by the convergence of projection methods.Our results include the previous results as special cases extend and improve the main results obtained by many others.展开更多
For the Hermitian inexact Rayleigh quotient iteration (RQI), we consider the local convergence of the inexact RQI with the Lanczos method for the linear systems involved. Some attractive properties are derived for t...For the Hermitian inexact Rayleigh quotient iteration (RQI), we consider the local convergence of the inexact RQI with the Lanczos method for the linear systems involved. Some attractive properties are derived for the residual, whose norm is ξk, of the linear system obtained by the Lanczos method at outer iteration k + 1. Based on them, we make a refined analysis and establish new local convergence results. It is proved that (i) the inexact RQI with Lanezos converges quadratically provided that ξk ≤ξ with a constant ξ≥) 1 and (ii) the method converges linearly provided that ξk is bounded by some multiple of 1/‖τk‖ with ‖τk‖ the residual norm of the approximate eigenpair at outer iteration k. The results are fundamentally different from the existing ones that always require ξk 〈 1, and they have implications on effective implementations of the method. Based on the new theory, we can design practical criteria to control ξk to achieve quadratic convergence and implement the method more effectively than ever before. Numerical experiments confirm our theory and demonstrate that the inexact RQI with Lanczos is competitive to the inexact RQI with MINRES.展开更多
基金Supported by the Scientific Research Fund of Zhejiang Province Education Depart-ment(200700190) Supported by the Science Technique Planed Item of Taizhou City(063KY08)Supported by Major Scientific Research Fund of Taizhou University(09ZD08)
文摘In this paper, we study the convergence rate of two-dimensional Baakakov operators with Jacobi-weights and the approximation equivalence theorem is obtained, making use of multivariate decompose skills and results of one-dimensional Baskakov operators.
基金Supported by the NSF of Henan Province(092300410150)Supported by the NSF of Department Education of Henan Province(2009C110002)Supported by the Key Teacher Foundation of Huanghuai University
文摘In this paper,we consider a new algorithm for a generalized system for relaxed coercive nonlinear inequalities involving three different operators in Hilbert spaces by the convergence of projection methods.Our results include the previous results as special cases extend and improve the main results obtained by many others.
基金supported by National Basic Research Program of China(Grant No.2011CB302400)National Natural Science Foundation of China(Grant No.11071140)
文摘For the Hermitian inexact Rayleigh quotient iteration (RQI), we consider the local convergence of the inexact RQI with the Lanczos method for the linear systems involved. Some attractive properties are derived for the residual, whose norm is ξk, of the linear system obtained by the Lanczos method at outer iteration k + 1. Based on them, we make a refined analysis and establish new local convergence results. It is proved that (i) the inexact RQI with Lanezos converges quadratically provided that ξk ≤ξ with a constant ξ≥) 1 and (ii) the method converges linearly provided that ξk is bounded by some multiple of 1/‖τk‖ with ‖τk‖ the residual norm of the approximate eigenpair at outer iteration k. The results are fundamentally different from the existing ones that always require ξk 〈 1, and they have implications on effective implementations of the method. Based on the new theory, we can design practical criteria to control ξk to achieve quadratic convergence and implement the method more effectively than ever before. Numerical experiments confirm our theory and demonstrate that the inexact RQI with Lanczos is competitive to the inexact RQI with MINRES.