期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Steinbeck's oriental complex
1
作者 栾丽梅 《Sino-US English Teaching》 2009年第4期65-67,共3页
John Steinbeck, who has won the Nobel Prize because of his "Grapes of Wrath", is one of the most famous America novelists. This article pays special attention on how does Taoist Oriental civilization save the declin... John Steinbeck, who has won the Nobel Prize because of his "Grapes of Wrath", is one of the most famous America novelists. This article pays special attention on how does Taoist Oriental civilization save the decline of Western spiritual world, and the "Eastern" color, as well as the concept of good and evil conflict and the coincidence of Steinbeck's theme with Chinese culture. In this sense, Steinbeck's works have a great association with the oriental. 展开更多
关键词 oriental color good and evil conflict Steinbeck
下载PDF
为什么要重建中国法系
2
作者 居正 郭嘉(整理) 《法律文化研究》 2007年第1期479-506,共28页
目次一、引言二、殷周及其前期法律萌芽情形的检讨三、法律思想蓬勃的一个时期四、儒家学说对于历代法律的影响五、重建中国法系的趣向六、结论一、引言或谓我等生斯世也,为斯世也,似应该与世推移,善斯可矣,何必是古非今?效康成人何休之... 目次一、引言二、殷周及其前期法律萌芽情形的检讨三、法律思想蓬勃的一个时期四、儒家学说对于历代法律的影响五、重建中国法系的趣向六、结论一、引言或谓我等生斯世也,为斯世也,似应该与世推移,善斯可矣,何必是古非今?效康成人何休之室,操何休之戈,针膏肓,起废疾,以自绝于时髦. 展开更多
关键词 儒家 现实派 法律 学说 历代 效康 善斯 趣向
原文传递
Classification with Gaussians and convex loss Ⅱ:improving error bounds by noise conditions 被引量:3
3
作者 XIANG DaoHong 《Science China Mathematics》 SCIE 2011年第1期165-171,共7页
We continue our study on classification learning algorithms generated by Tikhonov regularization schemes associated with Gaussian kernels and general convex loss functions. Our main purpose of this paper is to improve... We continue our study on classification learning algorithms generated by Tikhonov regularization schemes associated with Gaussian kernels and general convex loss functions. Our main purpose of this paper is to improve error bounds by presenting a new comparison theorem associated with general convex loss functions and Tsybakov noise conditions. Some concrete examples are provided to illustrate the improved learning rates which demonstrate the effect of various loss functions for learning algorithms. In our analysis, the convexity of the loss functions plays a central role. 展开更多
关键词 reproducing kernel Hilbert space binary classification general convex loss Tsybakov noise condition Sobolev space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部