The structural and vibrational properties of two-dimensional hexagonal silicon (silicene) and germanium (germanene) are investigated by means of first-principles calculations. It is predicted that the silicene (g...The structural and vibrational properties of two-dimensional hexagonal silicon (silicene) and germanium (germanene) are investigated by means of first-principles calculations. It is predicted that the silicene (germanene) structure with a small buckling of 0.44 ,~ (0.7/k) and bond lengths of 2.28 ,~ (2.44 .~) is energetically the most favorable, and it does not exhibit imaginary phonon mode. The calculated non-resonance Raman spectra of silicene are characterized by a main peak at about 575 cm-1, namely the G-like peak. For germanene, the highest peak is at about 290 cm-1. Extensive calculations on armchair silicene nanoribbons and armchair germanene nanoribbons are also performed, with and without hydrogenation of the edges. The studies reveal other Raman peaks mainly distributed at lower frequencies than the G-like peak which could be attributed to the defects at the edges of the ribbons, thus not present in the Raman spectra of non-defective silicene and germanene. Particularly the Raman peak corresponding to the D mode is found to be located at around 515 cm-1 for silicene and 270 cm-1 for germanene. The calculated G-like and the D peaks are likely the fingerprints of the Raman spectra of the low-buckled structures of silicene and germanene.展开更多
The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-...The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-layer MoSe2 nanosheets. By using Se and MoO3 as the chemical vapor supply, we demonstrate that highly crystalline MoSe2 can be directly grown on the 300 nm SiO2/Si substrates to form optically distinguishable single- and multi-layer nanosheets, typically in triangular shaped domains with edge lengths around 30 btm, which can merge into continuous thin films upon further growth. Micro-Raman spectroscopy and imaging was used to probe the thickness-dependent vibrational properties. Photoluminescence spectroscopy demonstrates that MoSe2 monolayers exhibit strong near band edge emission at 1.55 eV, while bilayers or multi-layers exhibit much weaker emission, indicating of the transition to a direct band gap semiconductor as the thickness is reduced to a monolayer.展开更多
文摘The structural and vibrational properties of two-dimensional hexagonal silicon (silicene) and germanium (germanene) are investigated by means of first-principles calculations. It is predicted that the silicene (germanene) structure with a small buckling of 0.44 ,~ (0.7/k) and bond lengths of 2.28 ,~ (2.44 .~) is energetically the most favorable, and it does not exhibit imaginary phonon mode. The calculated non-resonance Raman spectra of silicene are characterized by a main peak at about 575 cm-1, namely the G-like peak. For germanene, the highest peak is at about 290 cm-1. Extensive calculations on armchair silicene nanoribbons and armchair germanene nanoribbons are also performed, with and without hydrogenation of the edges. The studies reveal other Raman peaks mainly distributed at lower frequencies than the G-like peak which could be attributed to the defects at the edges of the ribbons, thus not present in the Raman spectra of non-defective silicene and germanene. Particularly the Raman peak corresponding to the D mode is found to be located at around 515 cm-1 for silicene and 270 cm-1 for germanene. The calculated G-like and the D peaks are likely the fingerprints of the Raman spectra of the low-buckled structures of silicene and germanene.
文摘The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-layer MoSe2 nanosheets. By using Se and MoO3 as the chemical vapor supply, we demonstrate that highly crystalline MoSe2 can be directly grown on the 300 nm SiO2/Si substrates to form optically distinguishable single- and multi-layer nanosheets, typically in triangular shaped domains with edge lengths around 30 btm, which can merge into continuous thin films upon further growth. Micro-Raman spectroscopy and imaging was used to probe the thickness-dependent vibrational properties. Photoluminescence spectroscopy demonstrates that MoSe2 monolayers exhibit strong near band edge emission at 1.55 eV, while bilayers or multi-layers exhibit much weaker emission, indicating of the transition to a direct band gap semiconductor as the thickness is reduced to a monolayer.