The Himalaya represents a vast mountain system and globally valued for its significant role in regulation of global as well as regional climate that has direct impact on biodiversity and ecosystem services crucial for...The Himalaya represents a vast mountain system and globally valued for its significant role in regulation of global as well as regional climate that has direct impact on biodiversity and ecosystem services crucial for sustenance of millions of people in Himalaya and adjoining areas. However, mountain regions worldwide are impacted by climate change and at the same time represent distinctive area for the assessment of climate related impacts. Climate change impacts in Himalayan region have its implications on food production, natural ecosystems,retreat of glacier, water supply, human and animal health and overall human well being. The livelihood and food security of the people inhabited in region largely depend on climate sensitive sectors i.e.agriculture, livestock, forestry and their interlinkages with each other, and has the potential to break down food and nutritional security as well as livelihood support systems. People's perception and understanding of climate can be an important asset when it comes to adaptation to climate change impact;however it is not taken into consideration for the development of policy design and implementation of modern mitigation and adaptation strategies by governments and other civil society organizations.The knowledge of local people and farming communities for rural landscape management and sustainable use of bioresources is gaining credence as a key strategy to cope up with the climate change.Therefore, the present study analyzes the indigenous knowledge of local people and their perceptions on climate change, and also documented adaptation approaches at local level in mountain ecosystem of western Himalaya. The study could be useful to policy makers to design appropriate adaptation strategies to cope up with the impacts of climate change.展开更多
Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an ex...Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.展开更多
On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Un...On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.展开更多
This study has examined the temporal variation in monthly, seasonal & annual precipitation over the Western Himalayan Region(WHR) and the influence of global teleconnections, like the North Atlantic Oscillation(NA...This study has examined the temporal variation in monthly, seasonal & annual precipitation over the Western Himalayan Region(WHR) and the influence of global teleconnections, like the North Atlantic Oscillation(NAO) and Southern Oscillation(SO) Indices on seasonal & annual precipitation. The Mann–Kendall non-parametric test is applied for trend detection and the Pettitt–Mann–Whitney test is used to detect possible shift. Maximum entropy spectral analysis is applied to find the periodicity in annual & seasonal precipitation. The study shows a non-significant decreasing trend in annual precipitation over WHR for the period 1857-2006. However, in seasonal precipitation, a significant decreasing trend is observed in monsoon and a significant increasing trend in post-monsoon season during the same period. The significant decrease in monsoon precipitation may be due to weakening of its teleconnection with NAO as well as SO Indices mainly during last three decades. It is observed that the probable change of year in annual & monsoon precipitation over WHR is 1979. The study also shows significant periodicities of 2.3-2.9 years and of 3.9-4.7 years in annual & seasonal precipitation over WHR.展开更多
The Himalayan leucogranite occurs as two extensive(>1000 km) E-W trending belts on the Tibetan Plateau with the unique features. The leucogranite comprised biotite granite, two-mica/muscovite granite, tourmaline gr...The Himalayan leucogranite occurs as two extensive(>1000 km) E-W trending belts on the Tibetan Plateau with the unique features. The leucogranite comprised biotite granite, two-mica/muscovite granite, tourmaline granite and garnet granite, which have been identified in previous studies, as well as albite granite and granitic pegmatite that were identified in this investigation. Fifteen leucogranite plutons were studied and 12 were found to contain rare-metal bearing minerals such as beryl(the representative of Be mineralization), columbite-group minerals, tapiolite, pyrochlore-microlite, fergusonite, Nb-Ta rutile(the representative of Nb-Ta mineralization), and cassiterite(the representative of Sn mineralization) mainly based on the field trip,microscope observation and microprobe analysis. The preliminary result shows that the Himalayan leucogranite is commonly related to the rare-metal mineralization and warrants future investigation. Further exploration and intensive research work is important in determining the rare-metal resource potential of this area.展开更多
基金Task Force 3‘Forest Resources and Plant Biodiversity’under National Mission for Sustaining Himalayan Ecosystem(NMSHE)funded by Department of Science and Technology(DST),Govt.of India for financial support(DST/SPLICE/CCP/NMSHE/TF/GBPIHED/2014[G]dated 2/09/14)to conduct the study
文摘The Himalaya represents a vast mountain system and globally valued for its significant role in regulation of global as well as regional climate that has direct impact on biodiversity and ecosystem services crucial for sustenance of millions of people in Himalaya and adjoining areas. However, mountain regions worldwide are impacted by climate change and at the same time represent distinctive area for the assessment of climate related impacts. Climate change impacts in Himalayan region have its implications on food production, natural ecosystems,retreat of glacier, water supply, human and animal health and overall human well being. The livelihood and food security of the people inhabited in region largely depend on climate sensitive sectors i.e.agriculture, livestock, forestry and their interlinkages with each other, and has the potential to break down food and nutritional security as well as livelihood support systems. People's perception and understanding of climate can be an important asset when it comes to adaptation to climate change impact;however it is not taken into consideration for the development of policy design and implementation of modern mitigation and adaptation strategies by governments and other civil society organizations.The knowledge of local people and farming communities for rural landscape management and sustainable use of bioresources is gaining credence as a key strategy to cope up with the climate change.Therefore, the present study analyzes the indigenous knowledge of local people and their perceptions on climate change, and also documented adaptation approaches at local level in mountain ecosystem of western Himalaya. The study could be useful to policy makers to design appropriate adaptation strategies to cope up with the impacts of climate change.
文摘Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.
文摘On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.
文摘This study has examined the temporal variation in monthly, seasonal & annual precipitation over the Western Himalayan Region(WHR) and the influence of global teleconnections, like the North Atlantic Oscillation(NAO) and Southern Oscillation(SO) Indices on seasonal & annual precipitation. The Mann–Kendall non-parametric test is applied for trend detection and the Pettitt–Mann–Whitney test is used to detect possible shift. Maximum entropy spectral analysis is applied to find the periodicity in annual & seasonal precipitation. The study shows a non-significant decreasing trend in annual precipitation over WHR for the period 1857-2006. However, in seasonal precipitation, a significant decreasing trend is observed in monsoon and a significant increasing trend in post-monsoon season during the same period. The significant decrease in monsoon precipitation may be due to weakening of its teleconnection with NAO as well as SO Indices mainly during last three decades. It is observed that the probable change of year in annual & monsoon precipitation over WHR is 1979. The study also shows significant periodicities of 2.3-2.9 years and of 3.9-4.7 years in annual & seasonal precipitation over WHR.
基金supported by the National Natural Science Foundation of China (Grants Nos. 41230315 and 41130313)the Fundamental Research Funds for the Central Universities (Grants No. 020614380057)
文摘The Himalayan leucogranite occurs as two extensive(>1000 km) E-W trending belts on the Tibetan Plateau with the unique features. The leucogranite comprised biotite granite, two-mica/muscovite granite, tourmaline granite and garnet granite, which have been identified in previous studies, as well as albite granite and granitic pegmatite that were identified in this investigation. Fifteen leucogranite plutons were studied and 12 were found to contain rare-metal bearing minerals such as beryl(the representative of Be mineralization), columbite-group minerals, tapiolite, pyrochlore-microlite, fergusonite, Nb-Ta rutile(the representative of Nb-Ta mineralization), and cassiterite(the representative of Sn mineralization) mainly based on the field trip,microscope observation and microprobe analysis. The preliminary result shows that the Himalayan leucogranite is commonly related to the rare-metal mineralization and warrants future investigation. Further exploration and intensive research work is important in determining the rare-metal resource potential of this area.