The aerodynamic performance of a gas turbine nozzle vane cascade was investigated over a range of Mach and Reynolds numbers.The work is part of a vast research project aimed at the analysis of fluid dynamics and heat ...The aerodynamic performance of a gas turbine nozzle vane cascade was investigated over a range of Mach and Reynolds numbers.The work is part of a vast research project aimed at the analysis of fluid dynamics and heat transfer phenomena in cooled blades.In this paper computed results on the"solid vane"(without cooling devices)are presented and discussed in comparison with experimental data.Detailed measurements were provided by the University of Bergamo where the experimental campaign was carried out by means of a subsonic wind tunnel.The impact of boundary layer transition is investigated by using a novel laminar kinetic energy transport model and the widely used Langtry-Menterγ-Reθ,t model.The comparison between calculations and measurements is presented in terms of blade loading distributions,total pressure loss coefficient contours downstream of the cascade,and velocity/turbulence-intensity profiles within the boundary layer at selected blade surface locations at mid-span.It will be shown how transitional calculations compare favorably with experiments.展开更多
In order to shorten aero-engine axial length,substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle,LP turbine is integrated with intermediate turbine...In order to shorten aero-engine axial length,substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle,LP turbine is integrated with intermediate turbine duct(ITD).In the current paper,five vanes of the first stage LP turbine nozzle is replaced with loaded struts for supporting the engine shaft,and providing oil pipes circumferentially which fulfilled the areo-engine structure requirement.However,their bulky geometric size represents a more effective obstacle to flow from high pressure(HP) turbine rotor.These five struts give obvious influence for not only the LP turbine nozzle but also the flowfield within the ITD,and hence cause higher loss.Numerical investigation has been undertaken to observe the influence of the Nozzle-Strut integrated design concept on the flowfield within the ITD and the nearby nozzle blades.According to the computational results,three main conclusions are finally obtained.Firstly,a noticeable low speed area is formed near the strut's leading edge,which is no doubt caused by the potential flow effects.Secondly,more severe radial migration of boundary layer flow adjacent to the strut's pressure side have been found near the nozzle's trailing edge.Such boundary layer migration is obvious,especially close to the shroud domain.Meanwhile,radial pressure gradient aggravates this phenomenon.Thirdly,velocity distribution along the strut's pressure side on nozzle's suction surface differs,which means loading variation of the nozzle.And it will no doubt cause nonuniform flowfield faced by the downstream rotor blade.展开更多
Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,w...Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.展开更多
基金the project INSIDE(Aerothermal Investigation of cooled Stage turb Ine:Design optimization and Experimental analysis)PRIN 2011 n.2010K3B4RLfunded by the Italian Ministry of Instruction,University and Research(MIUR)
文摘The aerodynamic performance of a gas turbine nozzle vane cascade was investigated over a range of Mach and Reynolds numbers.The work is part of a vast research project aimed at the analysis of fluid dynamics and heat transfer phenomena in cooled blades.In this paper computed results on the"solid vane"(without cooling devices)are presented and discussed in comparison with experimental data.Detailed measurements were provided by the University of Bergamo where the experimental campaign was carried out by means of a subsonic wind tunnel.The impact of boundary layer transition is investigated by using a novel laminar kinetic energy transport model and the widely used Langtry-Menterγ-Reθ,t model.The comparison between calculations and measurements is presented in terms of blade loading distributions,total pressure loss coefficient contours downstream of the cascade,and velocity/turbulence-intensity profiles within the boundary layer at selected blade surface locations at mid-span.It will be shown how transitional calculations compare favorably with experiments.
基金supported by grants from the National Natural Science Foundation of China(No.51306177)
文摘In order to shorten aero-engine axial length,substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle,LP turbine is integrated with intermediate turbine duct(ITD).In the current paper,five vanes of the first stage LP turbine nozzle is replaced with loaded struts for supporting the engine shaft,and providing oil pipes circumferentially which fulfilled the areo-engine structure requirement.However,their bulky geometric size represents a more effective obstacle to flow from high pressure(HP) turbine rotor.These five struts give obvious influence for not only the LP turbine nozzle but also the flowfield within the ITD,and hence cause higher loss.Numerical investigation has been undertaken to observe the influence of the Nozzle-Strut integrated design concept on the flowfield within the ITD and the nearby nozzle blades.According to the computational results,three main conclusions are finally obtained.Firstly,a noticeable low speed area is formed near the strut's leading edge,which is no doubt caused by the potential flow effects.Secondly,more severe radial migration of boundary layer flow adjacent to the strut's pressure side have been found near the nozzle's trailing edge.Such boundary layer migration is obvious,especially close to the shroud domain.Meanwhile,radial pressure gradient aggravates this phenomenon.Thirdly,velocity distribution along the strut's pressure side on nozzle's suction surface differs,which means loading variation of the nozzle.And it will no doubt cause nonuniform flowfield faced by the downstream rotor blade.
基金funded by the National Natural Science Foundation of China(No.51176013)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111101130002),China
文摘Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.