A new concept of bend-mode inkjet nozzle with double PZT (lead zirconate titanate) actuators has been designed and fabricated in the present study. Then the pressure wave and fluid velocity at the nozzle exit have bee...A new concept of bend-mode inkjet nozzle with double PZT (lead zirconate titanate) actuators has been designed and fabricated in the present study. Then the pressure wave and fluid velocity at the nozzle exit have been investigated. The complex pressure behavior inside the channel was solved numerically based on the narrow channel acoustic theory. The two PZTs attached to a rectangular channel were actuated sequentially by setting the waveforms of each PZT to be center-aligned with various pulse widths. As a result, the double PZT actuation is superior to the single PZT actuation in view of strong momentum force and fast dissipation of residual pressure. The maximum fluid velocity at the nozzle exit is observed when the respective pulse widths equal to their optimum pulse widths. The numerical results are supported by the experimental results with the fabricated inkjet device by measuring the speed of meniscus just out of the nozzle.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2010-0009054)
文摘A new concept of bend-mode inkjet nozzle with double PZT (lead zirconate titanate) actuators has been designed and fabricated in the present study. Then the pressure wave and fluid velocity at the nozzle exit have been investigated. The complex pressure behavior inside the channel was solved numerically based on the narrow channel acoustic theory. The two PZTs attached to a rectangular channel were actuated sequentially by setting the waveforms of each PZT to be center-aligned with various pulse widths. As a result, the double PZT actuation is superior to the single PZT actuation in view of strong momentum force and fast dissipation of residual pressure. The maximum fluid velocity at the nozzle exit is observed when the respective pulse widths equal to their optimum pulse widths. The numerical results are supported by the experimental results with the fabricated inkjet device by measuring the speed of meniscus just out of the nozzle.