Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load i...Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load is proposed based on the analysis and study of a large number of unit operation optimization methods.According to the steam-excited vibration that occurs during the optimization process when the nozzle governing steam turbine switches from a single valve to multi-valves a steam admission optimization program is proposed.This comprehensive program considering the steam-excited vibration is applied to a 600 MW steam turbine unit to obtain the optimum sliding pressure curve and the optimum operation mode and the steam-excited vibration is solved successfully.展开更多
To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubbl...To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter.展开更多
The bubble growth and detachment behavior in the bottom blowing process were investigated. Four multi-hole nozzle configurations with different opening ratios were assessed experimentally using high-speed photography ...The bubble growth and detachment behavior in the bottom blowing process were investigated. Four multi-hole nozzle configurations with different opening ratios were assessed experimentally using high-speed photography and digital image processing. For these configurations, the experiments reveal that the bubble growth consists of a petal-like stage, an expansion stage and a detachment stage. The petal-like shape is qualitatively described through the captured images, while the non-spherical bubbles are analyzed by the aspect ratio. The bubble size at the detachment is quantified by the maximum caliper distance and the bubble equivalent diameter. Considering the dependence on the opening ratio, different prediction models for the ratio of maximum caliper distance to hydraulic diameter of the nozzle outlet and the dimensionless bubble diameter are established. The comparative analysis results show that the proposed prediction model can accurately predict the bubble detachment size under the condition of multi-hole nozzles.展开更多
A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law ...A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law of static pressure and velocity are characterized and analyzed. The relationship between the flowing state and the structure of the vortex spun yarn is also discussed. The research results can enhance the understanding of the yarn formation principle from viewpoint of the airflow field law inside the nozzle block of Murata vortex spinning.展开更多
Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on...Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.展开更多
In order to investigate the effect of the radial gradation of the lobed nozzles on the flow field organization,a cold water model experimental platform for a combustion chamber with radial⁃staged 13-point lobed nozzle...In order to investigate the effect of the radial gradation of the lobed nozzles on the flow field organization,a cold water model experimental platform for a combustion chamber with radial⁃staged 13-point lobed nozzles is built.Compared with a series of combustion OH*luminescence experiments tested by the University of Cincinnati,the four corresponding working conditions of no load,partial load,cruise and take off are selected.The vortex structure,vorticity value,multi-combustion materiel field and combustion characteristics of the flow field in the radial staged combustion chamber of the lobed nozzles under the equivalence ratio,the fuel injection method,the fuel injection ratio and other factors are numerically studied.The results show that under different influencing factors,the varation trend of the hydroxyl flame field of the lobe combustion chamber is basically the same as that of the hydroxyl light emission experiment of the swirl combustion chamber,but the flame field shape is quite different.The local equivalent ratio has a greater influence on the relevant combustion performance of the combustion chamber.Under the conditions of lower equivalence ratio,three-stage air and fuel injection mode,and gradually transferring the fuel flow of the pilot circuit to the external circuit,the temperature field and flame field of the combustion chamber are more evenly distributed,the outlet temperature field quality is better,the combustion efficiency is higher,and the NO_(X) emission is relatively low.These are basically consistent with the cold test results.The cold experimental results illustrate the importance of the influence of the flow field organization on the combustion organization and verify the reliability of the calculation results.展开更多
An attempt was made to extend mild combustion to forward flow furnace, such as the refinery and petrochemical tube furnace. Three dimensional numerical simulation was carried out to study the performance of this furna...An attempt was made to extend mild combustion to forward flow furnace, such as the refinery and petrochemical tube furnace. Three dimensional numerical simulation was carried out to study the performance of this furnace. The Eddy Dissipation Concept(EDC) model coupled with the reaction mechanism DRM-19 was used. The prediction showed a good agreement with the measurement. The effect of air nozzle circle(D), air nozzle diameter(d), air nozzle number(N), and air preheating temperature(Tair) on the flow, temperature and species fields, and the CO and NO emissions was investigated. The results indicate that there are four zones in the furnace, viz.: a central jet zone, an ignition zone, a combustion reaction zone, and a flue gas zone, according to the distribution profiles of H_2 CO and OH. The central jet entrains more flue gas in the furnace upstream with an increasing D while the effect of D is negligible in the downstream. The air jet momentum increases with a decreasing d or an increasing Tair, and entrains more flue gas. The effect of N is mainly identified near the burner exit. More heat is absorbed in the radiant section and less heat is discharged to the atmosphere with a decreasing d and an increasing N as evidenced by the flue gas temperature. The CO and NO emissions are less than 50 μL/L and 10 μL/L, respectively, in most of conditions.展开更多
Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supers...Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supersonic flow has not been sufficiently clarified. Hence, in order to clarify the interactions between flow and particles, the authors consider the characteristics of particle motion, especially at high temperatures. In the present study, the flow of a gas with a diluted particle load is to be simulated in a conventional converging-diverging supersonic nozzle. The turbulent gas flow in the nozzle is computed with the finite difference and RANS (raynolds averaged navier-stokes simulation) methods. The particle motion is simulated in a Lagrangian manner. In addition, taking into account the light particle loading, a weak coupling method is used. Through this investigation, it is shown that the particle velocity increases monotonically from the nozzle throat to the outlet. And it is shown that particles can be accelerated to higher velocities in helium than in nitrogen, and smaller particles tend to attain higher speed and lower static temperature.展开更多
The supersonic nozzle is the most important device of an ejector-diffuser system.The best operation condition and optimal structure of supersonic nozzle are hardly known due to the complicated turbulent mixing,compres...The supersonic nozzle is the most important device of an ejector-diffuser system.The best operation condition and optimal structure of supersonic nozzle are hardly known due to the complicated turbulent mixing,compressibility effects and even flow unsteadiness which are generated around the nozzle extent.In the present study,the primary stream nozzle was redesigned using convergent nozzle to activate the shear actions between the primary and secondary streams,by means of longitudinal vortices generated between the Chevron lobes.Exactly same geometrical model of ejector-diffuser system was created to validate the results of experimental data.The operation characteristics of the ejector system were compared between Chevron nozzle and conventional convergent nozzle for the primary stream.A CFD method has been applied to simulate the supersonic flows and shock waves inside the ejector.It is observed that the flow structure and shock system were changed and primary numerical analysis results show that the Chevron nozzle achieve a positive effect on the supersonic ejector-diffuser system performance.The ejector with Chevron nozzle can entrain more secondary stream with less primary stream mass flow rate.展开更多
To control the film thickness of zinc in the process of continuous hot-dip galvanizing, it is known from the early days that the gas wiping through an air knife is the most effective one. The gas wiping using in galva...To control the film thickness of zinc in the process of continuous hot-dip galvanizing, it is known from the early days that the gas wiping through an air knife is the most effective one. The gas wiping using in galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. So, in the present study, the effects of the deflection angle of Coanda nozzle on jet structure and the distribution of impinging pres- sure at the plate surface are investigated numerically and experimentally. In numerical analysis, the governing equations consisted of three-dimensional time dependent full Navier-Stokes equations, standard k-ε turbulence model to solve turbulent stTess and so on are employed. In experiment, 16 channel pressure scanning valve and 3-axis auto traversing unit are used to measure the impinging pressure at the strip surface. As a result, it is found that the smaller the deflection angle for the same nozzle slit of air knife is, the larger the impinging pressure is. To reduce the size of separation bubble and to enhance the cutting ability, it is recommendable to use an air knife with the Coanda nozzle.展开更多
In this paper numerical calculations of the dry and humid air flows in the nozzle are presented. The dry air flow (adiabatic flow) and the humid air flow (flow with homogeneous condensation, diabatic flow) are modeled...In this paper numerical calculations of the dry and humid air flows in the nozzle are presented. The dry air flow (adiabatic flow) and the humid air flow (flow with homogeneous condensation, diabatic flow) are modeled with the use of Reynolds Averaged Navier-Stokes (RANS) equations. The comparison of these two types of flow is carried out. The influence of the air humidity on the shock wave location and its interaction with the boundary layer is examined. Obtained numerical results present a first numerical approach of the condensation and evaporation process in transonic flow of humid air. The phenomena considered here are very complex and complicated and need further in-depth numerical analysis.展开更多
The leaks of pressurized hydrogen can be ignited if an ignition source is within a certain distance from the source of the leaks, and jet ftres or explosions may take place. In this paper, a high speed camera was used...The leaks of pressurized hydrogen can be ignited if an ignition source is within a certain distance from the source of the leaks, and jet ftres or explosions may take place. In this paper, a high speed camera was used to investigate the ignition kernel development, ignition probability and flame propagation along the axis of hydrogen jets, which leaked from a 3-ram-internal-diameter nozzle and were ignited by an electric spark. Experimental results indicate that for successful ignition events, the ignition delay time increases with an increase of the distance between the nozzle and the electrode. Ignitable zone of the hydrogen jets is underestimated if using the predicted hydrogen concentration along the jets centerline. The average rate of downstream flame decreases but that of the upstream flame increases with the electrode going far from the nozzle.展开更多
This paper deals mainly with pneumatic measurements on a radial turbine nozzle cascade. The fill radial cascade guarantees the exit flow field periodicity downstream of it. A special traversing mechanism with a five -...This paper deals mainly with pneumatic measurements on a radial turbine nozzle cascade. The fill radial cascade guarantees the exit flow field periodicity downstream of it. A special traversing mechanism with a five - hole conical probe moving along a circular path behind the cascade was used for flow field investigation in this type of cascade with very low aspect ratio. The analyses of results of 2D and 3D pneumatic measurements including loss coefficient values are presented.展开更多
In a gas turbine engine combustor, highly swiding combustion is usually adopted to stabilize flame and reduce pollutant emissions. Swirl cup, as an air blast atomizer, is widely used to provide a uniform presentation ...In a gas turbine engine combustor, highly swiding combustion is usually adopted to stabilize flame and reduce pollutant emissions. Swirl cup, as an air blast atomizer, is widely used to provide a uniform presentation of fuel droplets to the combustor dome. This paper investigated the effect of secondary swirler on the flow field down- stream of the swirl cup using particle image velocimetry (PIV). Three swirl cups' non-reacting flow field were studied: case A, B and C with secondary swirler vane angle 53°, 60° and 68° respectively. Detailed mean and transient velocities and vorticity in the center plane were obtained. From the PIV results, a sharp contrast flow field was obtained for case A to other two cases due to the lower secondary swirling intensity. The recirculation zone is collapsed in disorder for the case A. Ignition tests of the three cups were completed in a single cup com- bustor. In general, the ignition performance increases with the increasing of the secondary swirling intensity. For case A, the ignition performance is very unstable and has much randomness and there is no clear lean ignition boundary can be generated. This work can further understand the swirl behavior and ignition mechanism.展开更多
基金The National Natural Science Foundation of China(No.51176031)
文摘Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load is proposed based on the analysis and study of a large number of unit operation optimization methods.According to the steam-excited vibration that occurs during the optimization process when the nozzle governing steam turbine switches from a single valve to multi-valves a steam admission optimization program is proposed.This comprehensive program considering the steam-excited vibration is applied to a 600 MW steam turbine unit to obtain the optimum sliding pressure curve and the optimum operation mode and the steam-excited vibration is solved successfully.
基金Project(51676087)supported by the National Natural Science Foundation of China
文摘To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter.
基金Project(51676211)supported by the National Natural Science Foundation of ChinaProject(2015zzts044)supported by Innovation Foundation for Postgraduate of Central South University,ChinaProject(2017SK2253)supported by the Key R&D Plan of Hunan Province,China
文摘The bubble growth and detachment behavior in the bottom blowing process were investigated. Four multi-hole nozzle configurations with different opening ratios were assessed experimentally using high-speed photography and digital image processing. For these configurations, the experiments reveal that the bubble growth consists of a petal-like stage, an expansion stage and a detachment stage. The petal-like shape is qualitatively described through the captured images, while the non-spherical bubbles are analyzed by the aspect ratio. The bubble size at the detachment is quantified by the maximum caliper distance and the bubble equivalent diameter. Considering the dependence on the opening ratio, different prediction models for the ratio of maximum caliper distance to hydraulic diameter of the nozzle outlet and the dimensionless bubble diameter are established. The comparative analysis results show that the proposed prediction model can accurately predict the bubble detachment size under the condition of multi-hole nozzles.
基金This project is supported by the National Natural Science Foundation of China,under grant No.10872047.
文摘A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law of static pressure and velocity are characterized and analyzed. The relationship between the flowing state and the structure of the vortex spun yarn is also discussed. The research results can enhance the understanding of the yarn formation principle from viewpoint of the airflow field law inside the nozzle block of Murata vortex spinning.
基金Project(51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key R&D Plan of Hunan Province of China+1 种基金Project(2015zzts044) supported by Fundamental Research Funds for the Central Universities,ChinaProject(201606370092) supported by the China Scholarship Council
文摘Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.
基金supported by the Lia⁃oning Provincial Natural Science Joint Fund Project(No.120316013).
文摘In order to investigate the effect of the radial gradation of the lobed nozzles on the flow field organization,a cold water model experimental platform for a combustion chamber with radial⁃staged 13-point lobed nozzles is built.Compared with a series of combustion OH*luminescence experiments tested by the University of Cincinnati,the four corresponding working conditions of no load,partial load,cruise and take off are selected.The vortex structure,vorticity value,multi-combustion materiel field and combustion characteristics of the flow field in the radial staged combustion chamber of the lobed nozzles under the equivalence ratio,the fuel injection method,the fuel injection ratio and other factors are numerically studied.The results show that under different influencing factors,the varation trend of the hydroxyl flame field of the lobe combustion chamber is basically the same as that of the hydroxyl light emission experiment of the swirl combustion chamber,but the flame field shape is quite different.The local equivalent ratio has a greater influence on the relevant combustion performance of the combustion chamber.Under the conditions of lower equivalence ratio,three-stage air and fuel injection mode,and gradually transferring the fuel flow of the pilot circuit to the external circuit,the temperature field and flame field of the combustion chamber are more evenly distributed,the outlet temperature field quality is better,the combustion efficiency is higher,and the NO_(X) emission is relatively low.These are basically consistent with the cold test results.The cold experimental results illustrate the importance of the influence of the flow field organization on the combustion organization and verify the reliability of the calculation results.
基金supported by the technology development fund of China Petroleum & Chemical Corporation (Sinopec 312016 and 314054)
文摘An attempt was made to extend mild combustion to forward flow furnace, such as the refinery and petrochemical tube furnace. Three dimensional numerical simulation was carried out to study the performance of this furnace. The Eddy Dissipation Concept(EDC) model coupled with the reaction mechanism DRM-19 was used. The prediction showed a good agreement with the measurement. The effect of air nozzle circle(D), air nozzle diameter(d), air nozzle number(N), and air preheating temperature(Tair) on the flow, temperature and species fields, and the CO and NO emissions was investigated. The results indicate that there are four zones in the furnace, viz.: a central jet zone, an ignition zone, a combustion reaction zone, and a flue gas zone, according to the distribution profiles of H_2 CO and OH. The central jet entrains more flue gas in the furnace upstream with an increasing D while the effect of D is negligible in the downstream. The air jet momentum increases with a decreasing d or an increasing Tair, and entrains more flue gas. The effect of N is mainly identified near the burner exit. More heat is absorbed in the radiant section and less heat is discharged to the atmosphere with a decreasing d and an increasing N as evidenced by the flue gas temperature. The CO and NO emissions are less than 50 μL/L and 10 μL/L, respectively, in most of conditions.
文摘Gas-particle two-phase flow is a very important consideration in designing various machines. Although a great deal of theoretical, experimental, and numerical research has been carried out, particle motion in a supersonic flow has not been sufficiently clarified. Hence, in order to clarify the interactions between flow and particles, the authors consider the characteristics of particle motion, especially at high temperatures. In the present study, the flow of a gas with a diluted particle load is to be simulated in a conventional converging-diverging supersonic nozzle. The turbulent gas flow in the nozzle is computed with the finite difference and RANS (raynolds averaged navier-stokes simulation) methods. The particle motion is simulated in a Lagrangian manner. In addition, taking into account the light particle loading, a weak coupling method is used. Through this investigation, it is shown that the particle velocity increases monotonically from the nozzle throat to the outlet. And it is shown that particles can be accelerated to higher velocities in helium than in nitrogen, and smaller particles tend to attain higher speed and lower static temperature.
文摘The supersonic nozzle is the most important device of an ejector-diffuser system.The best operation condition and optimal structure of supersonic nozzle are hardly known due to the complicated turbulent mixing,compressibility effects and even flow unsteadiness which are generated around the nozzle extent.In the present study,the primary stream nozzle was redesigned using convergent nozzle to activate the shear actions between the primary and secondary streams,by means of longitudinal vortices generated between the Chevron lobes.Exactly same geometrical model of ejector-diffuser system was created to validate the results of experimental data.The operation characteristics of the ejector system were compared between Chevron nozzle and conventional convergent nozzle for the primary stream.A CFD method has been applied to simulate the supersonic flows and shock waves inside the ejector.It is observed that the flow structure and shock system were changed and primary numerical analysis results show that the Chevron nozzle achieve a positive effect on the supersonic ejector-diffuser system performance.The ejector with Chevron nozzle can entrain more secondary stream with less primary stream mass flow rate.
文摘To control the film thickness of zinc in the process of continuous hot-dip galvanizing, it is known from the early days that the gas wiping through an air knife is the most effective one. The gas wiping using in galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. So, in the present study, the effects of the deflection angle of Coanda nozzle on jet structure and the distribution of impinging pres- sure at the plate surface are investigated numerically and experimentally. In numerical analysis, the governing equations consisted of three-dimensional time dependent full Navier-Stokes equations, standard k-ε turbulence model to solve turbulent stTess and so on are employed. In experiment, 16 channel pressure scanning valve and 3-axis auto traversing unit are used to measure the impinging pressure at the strip surface. As a result, it is found that the smaller the deflection angle for the same nozzle slit of air knife is, the larger the impinging pressure is. To reduce the size of separation bubble and to enhance the cutting ability, it is recommendable to use an air knife with the Coanda nozzle.
文摘In this paper numerical calculations of the dry and humid air flows in the nozzle are presented. The dry air flow (adiabatic flow) and the humid air flow (flow with homogeneous condensation, diabatic flow) are modeled with the use of Reynolds Averaged Navier-Stokes (RANS) equations. The comparison of these two types of flow is carried out. The influence of the air humidity on the shock wave location and its interaction with the boundary layer is examined. Obtained numerical results present a first numerical approach of the condensation and evaporation process in transonic flow of humid air. The phenomena considered here are very complex and complicated and need further in-depth numerical analysis.
基金Supported by the Fundamental Research Funds for the Central UniversitiesNational Natural Science Foundation of China(No.50806071)and(No.51276177)
文摘The leaks of pressurized hydrogen can be ignited if an ignition source is within a certain distance from the source of the leaks, and jet ftres or explosions may take place. In this paper, a high speed camera was used to investigate the ignition kernel development, ignition probability and flame propagation along the axis of hydrogen jets, which leaked from a 3-ram-internal-diameter nozzle and were ignited by an electric spark. Experimental results indicate that for successful ignition events, the ignition delay time increases with an increase of the distance between the nozzle and the electrode. Ignitable zone of the hydrogen jets is underestimated if using the predicted hydrogen concentration along the jets centerline. The average rate of downstream flame decreases but that of the upstream flame increases with the electrode going far from the nozzle.
基金supported by the Project KONTAKT #ME 08025 monitored by the Ministry of Education of the Czech Republicthe grant No101/08/0623 supported by the Czech Science Foundation
文摘This paper deals mainly with pneumatic measurements on a radial turbine nozzle cascade. The fill radial cascade guarantees the exit flow field periodicity downstream of it. A special traversing mechanism with a five - hole conical probe moving along a circular path behind the cascade was used for flow field investigation in this type of cascade with very low aspect ratio. The analyses of results of 2D and 3D pneumatic measurements including loss coefficient values are presented.
文摘In a gas turbine engine combustor, highly swiding combustion is usually adopted to stabilize flame and reduce pollutant emissions. Swirl cup, as an air blast atomizer, is widely used to provide a uniform presentation of fuel droplets to the combustor dome. This paper investigated the effect of secondary swirler on the flow field down- stream of the swirl cup using particle image velocimetry (PIV). Three swirl cups' non-reacting flow field were studied: case A, B and C with secondary swirler vane angle 53°, 60° and 68° respectively. Detailed mean and transient velocities and vorticity in the center plane were obtained. From the PIV results, a sharp contrast flow field was obtained for case A to other two cases due to the lower secondary swirling intensity. The recirculation zone is collapsed in disorder for the case A. Ignition tests of the three cups were completed in a single cup com- bustor. In general, the ignition performance increases with the increasing of the secondary swirling intensity. For case A, the ignition performance is very unstable and has much randomness and there is no clear lean ignition boundary can be generated. This work can further understand the swirl behavior and ignition mechanism.