采用批量培养的方法研究了螺旋鱼腥藻在氮限制和磷限制条件下生长与土嗅素的产生特征.在磷限制条件下螺旋鱼腥藻的生长速率降低,不易生成异形胞;而在氮限制下鱼腥藻生长良好,并生成异形胞,异形胞形成的比例为3.5%-4.4%.在磷限制和氮限...采用批量培养的方法研究了螺旋鱼腥藻在氮限制和磷限制条件下生长与土嗅素的产生特征.在磷限制条件下螺旋鱼腥藻的生长速率降低,不易生成异形胞;而在氮限制下鱼腥藻生长良好,并生成异形胞,异形胞形成的比例为3.5%-4.4%.在磷限制和氮限制条件下,单位细胞土嗅素的浓度在培养的前20d内都处于急速下降的趋势,之后开始趋于平缓,分别维持在3.18×10-5,3.68×10-5ng/cell左右.氮限制条件下螺旋鱼腥藻单位细胞土嗅素的生成量略高于磷限制条件下.氮限制条件下,螺旋鱼腥藻单位细胞叶绿素 a 的生成量高于磷限制条件下.螺旋鱼腥藻单位细胞产生的土嗅素与叶绿素a的质量比(geosmin/Chl a)在磷限制条件下要高于氮限制条件下.展开更多
Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI...Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.展开更多
In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximatel...In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximately 3-days-old) and adult (250 to approximately 350 g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERalpha transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERalpha was present in the adult cerebral cortex. No significant difference in ERbeta transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERalpha expression was significantly weaker than ERbeta. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERalpha transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERalpha/ERbeta transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.展开更多
文摘采用批量培养的方法研究了螺旋鱼腥藻在氮限制和磷限制条件下生长与土嗅素的产生特征.在磷限制条件下螺旋鱼腥藻的生长速率降低,不易生成异形胞;而在氮限制下鱼腥藻生长良好,并生成异形胞,异形胞形成的比例为3.5%-4.4%.在磷限制和氮限制条件下,单位细胞土嗅素的浓度在培养的前20d内都处于急速下降的趋势,之后开始趋于平缓,分别维持在3.18×10-5,3.68×10-5ng/cell左右.氮限制条件下螺旋鱼腥藻单位细胞土嗅素的生成量略高于磷限制条件下.氮限制条件下,螺旋鱼腥藻单位细胞叶绿素 a 的生成量高于磷限制条件下.螺旋鱼腥藻单位细胞产生的土嗅素与叶绿素a的质量比(geosmin/Chl a)在磷限制条件下要高于氮限制条件下.
文摘Objective Combine olfactory ensheathing glia (OEG) implantation with ex vivo non-viral vector-based neurotrophin- 3 (NT-3) gene therapy in attempting to enhance regeneration after thoracic spinal cord injury (SCI). Methods Primary OEG were transfected with cationic liposome-mediated recombinant plasmid pcDNA3.1 (+)-NT3 and subsequently implanted into adult Wistar rats directly after the thoracic spinal cord (T9) contusion by the New York University impactor. The animals in 3 different groups received 4x 1050EG transfected with pcDNA3.1 (+)-NT3 or pcDNA3.1 (+) plasmids, or the OEGs without any plasmid transfection, respectively; the fourth group was untreated group, in which no OEG was implanted. Results NT-3 production was seen increased both ex vivo and in vivo in pcDNA3.1 (+)-NT3 transfected OEGs. Three months after implantation of NT-3-transfected OEGs, behavioral analysis revealed that the hindlimb function of SCI rats was improved. All spinal cords were filled with regenerated neurofilament-positive axons. Retrograde tracing revealed enhanced regenerative axonal sprouting. Conclusion Non-viral vector-mediated genetic engineering of OEG was safe and more effective in producing NT- 3 and promoting axonal outgrowth followed by enhancing SCI recovery in rats.
文摘In the present study expression of estrogen receptor subtype -alpha (ERalpha) and -beta (ERbeta) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1 to approximately 3-days-old) and adult (250 to approximately 350 g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERalpha transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERalpha was present in the adult cerebral cortex. No significant difference in ERbeta transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERalpha expression was significantly weaker than ERbeta. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERalpha transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERalpha/ERbeta transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.