Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory syste...Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic gnanosine monophosphate (cGMP) as the key second messenger; however, the specific ion channel underlying CO2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG) channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs) of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6): 793-799, 2010].展开更多
We investigated the role of the main olfactory and accessory olfactory systems (MOS and AOS respectively) in the detection of androstenone. We used the following experimental approaches: behavioral, surgical remova...We investigated the role of the main olfactory and accessory olfactory systems (MOS and AOS respectively) in the detection of androstenone. We used the following experimental approaches: behavioral, surgical removal of the vomeronasal organ (VNX) followed by histochemical verification and Fos immunohistochemistry. Using a Y-maze paradigm we estimated sensitivity of NZB/B1NJ and CBA/J mice to androstenone. CBA mice were 2,000-fold more sensitive to androstenone than NZB mice. VNX caused a 4-tol6-fold decrease in sensitivity to androstenone in highly-sensitive CBA mice, but did not affect thresholds in NZB mice. Results indicate the involvement of the MOS and AOS in the detection of androstenone. We observed a specific pattern of Fos-positive cells in the main olfactory bulb of CBA mice but not in NZB mice subsequent to exposure of mice to androstenone; the compound activated cells in the accessory olfactory bulb in both strains of mice, indicating the involvement of the vomeronasal organ. Patterns of Fos-positive cells in the vomeronasal organ were recorded subsequent to exposure to androstenone. Fos-positive receptor cells in the vomeronasal organ of CBA and NZB mice were different, in CBA mice Fos-positive cells were noted in both the basal and apical zones, however, in NZB mice activation was observed only in the apical zone [Current Zoology 56 (6): 813-818, 2010].展开更多
This paper presents a novel method for inferring the odor based on neural activities observed from rats' main olfactory bulbs.Multi-channel extra-cellular single unit recordings are done by micro-wire electrodes(T...This paper presents a novel method for inferring the odor based on neural activities observed from rats' main olfactory bulbs.Multi-channel extra-cellular single unit recordings are done by micro-wire electrodes(Tungsten,50 μm,32 channels)implanted in the mitral/tufted cell layers of the main olfactory bulb of the anesthetized rats to obtain neural responses to various odors.Neural responses as a key feature are measured by subtraction firing rates before stimulus from after.For odor inference,a decoding method is developed based on the ML estimation.The results show that the average decoding accuracy is about 100.0%,96.0%,and 80.0% with three rats,respectively.This work has profound implications for a novel brain-machine interface system for odor inference.展开更多
OBJECTIVE: To investigate the effects of combined acupuncture and eugenol on learning-memory ability and the antioxidation system of the hippocampus in Alzheimer disease (AD) rats. METHODS: Sixty Sprague Dawley rats, ...OBJECTIVE: To investigate the effects of combined acupuncture and eugenol on learning-memory ability and the antioxidation system of the hippocampus in Alzheimer disease (AD) rats. METHODS: Sixty Sprague Dawley rats, weighing (300±10) g, were randomly divided with 10 rats per group into a normal control group, AD model group, AD with cut olfactory nerve group, Xiu three-needle group, eugenol group, and combined acupuncture and eugenol group. The AD model was established by injection of amyloid β1-40 (Aβ 1-40). Morris maze tests were conducted for evaluating the learning-memory ability. Content of malo- ndialdehyde (MDA) and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the hippocampus were detected. RESULTS: The average escape latency and the mean swimming distance in the normal control group, the Xiu three-needle group, the eugenol group, and the combined acupuncture and euge-nol group were significantly shorter than those in the AD model group (all P<0.01). The combined acupuncture and eugenol group had shorter escape latency and mean swimming distance than those in the Xiu three-needle group and the eugenol group. There were no significant differences between the Xiu three-needle group and the eugenol group and between the AD group and the AD with cut olfactory nerve group (P>0.05). Compared with the normal control group, the MDA content in the hippocampus significantly increased (P<0.05) and GSH-Px and SOD activities significantly decreased in the AD model group (P<0.01). Compared with the AD model group, significantly decreased (P< 0.01) and SOD and GSH-Px activities significantly increased in the Xiu three-needle group, eugenol group, and combined acupuncture and eugenol group (P<0.05). Compared with the Xiu three-needle group and eugenol group, the MDA content significantly decreased (P<0.05) and SOD and GSH-Px activities increased (P<0.05) in the combined acupuncture and eugenol group. There were no significant differences among the three indices between the Xiu three-needle group and the eugenol group and between the AD model group and the AD with cut olfactory nerve group (P>0.05). CONCLUSION: Both Xiu three-needle and eugenol can increase learning-memory ability, decrease MDA content, and increase SOD and GSH-Px activities in the hippocampus in AD rats. The combination of acupuncture with eugenol has stronger effects, and the effects depend on the olfactory pathway.展开更多
In this paper, a novel bionic model and its performance in pattern recognition are presented and discussed. The model is constructed from a bulb model and a three-layered cortical model, mimicking the main features of...In this paper, a novel bionic model and its performance in pattern recognition are presented and discussed. The model is constructed from a bulb model and a three-layered cortical model, mimicking the main features of the olfactory system. The olfactory bulb and cortex models are connected by feedforward and feedback fibers with distributed delays. The Breast Cancer Wisconsin dataset consisting of data from 683 patients divided into benign and malignant classes is used to demonstrate the capacity of the model to learn and recognize patterns, even when these are deformed versions of the originally learned patterns. The performance of the novel model was compared with three artificial neural networks (ANNs), a back-propagation network, a support vector machine classifier, and a radial basis function classifier. All the ANNs and the olfactory bionic model were tested in a benchmark study of a standard dataset. Experimental results show that the bionic olfactory system model can learn and classify patterns based on a small training set and a few learning trials to reflect biological intelligence to some extent.展开更多
In recent years the evolution of olfactory bulb periglomerular cells,as well as the function of periglomerular cells in olfactory encoding,has attracted increasing attention.Studies of neural information encoding base...In recent years the evolution of olfactory bulb periglomerular cells,as well as the function of periglomerular cells in olfactory encoding,has attracted increasing attention.Studies of neural information encoding based on the analysis of simulation and modeling have given rise to electrophysiological models of periglomerular cells,which have an important role in the understanding of the biology of these cells.In this review we provide a brief introduction to the anatomy of the olfactory system and the cell types in the olfactory bulb.We elaborate on the latest progress in the study of the heterogeneity of periglomerular cells based on different classification criteria,such as molecular markers,structure,ion channels and action potentials.Then,we discuss the several existing electrophysiological models of periglomerular cells,and we highlight the problems and defects of these models.Finally,considering our present work,we propose a future direction for electrophysiological investigations of periglomerular cells and for the modeling of periglomerular cells and olfactory information encoding.展开更多
基金supported by the China Ministry of Science and Technology 973 (2010CB833902)863 grants (2008AA022902)
文摘Atmospheric CO2 can signal the presence of food, predators or environmental stress and trigger stereotypical behaviors in both vertebrates and invertebrates. Recent studies have shown that the necklace olfactory system in mice sensitively detects CO2 in the air. Olfactory CO2 neurons are believed to rely on cyclic gnanosine monophosphate (cGMP) as the key second messenger; however, the specific ion channel underlying CO2 responses remains unclear. Here we show that CO2-evoked neuronal and behavioral responses require cyclic nucleotide-gated (CNG) channels consisting of the CNGA3 subunit. Through Ca2+-imaging, we found that CO2-triggered Ca2+ influx was abolished in necklace olfactory sensory neurons (OSNs) of CNGA3-knockout mice. Olfactory detection tests using a Go/No-go paradigm showed that these knockout mice failed to detect 0.5% CO2. Thus, sensitive detection of atmospheric CO2 depends on the function of CNG channels consisting of the CNGA3 subunit in necklace OSNs. These data support the important role of the necklace olfactory system in CO2 sensing and extend our understanding of the signal transduction pathway mediating CO2 detection in mammals [Current Zoology 56 (6): 793-799, 2010].
基金Supported in part by grants from the Russian Foundation for Basic Research,10-04-01599NIH RO1 DC000298
文摘We investigated the role of the main olfactory and accessory olfactory systems (MOS and AOS respectively) in the detection of androstenone. We used the following experimental approaches: behavioral, surgical removal of the vomeronasal organ (VNX) followed by histochemical verification and Fos immunohistochemistry. Using a Y-maze paradigm we estimated sensitivity of NZB/B1NJ and CBA/J mice to androstenone. CBA mice were 2,000-fold more sensitive to androstenone than NZB mice. VNX caused a 4-tol6-fold decrease in sensitivity to androstenone in highly-sensitive CBA mice, but did not affect thresholds in NZB mice. Results indicate the involvement of the MOS and AOS in the detection of androstenone. We observed a specific pattern of Fos-positive cells in the main olfactory bulb of CBA mice but not in NZB mice subsequent to exposure of mice to androstenone; the compound activated cells in the accessory olfactory bulb in both strains of mice, indicating the involvement of the vomeronasal organ. Patterns of Fos-positive cells in the vomeronasal organ were recorded subsequent to exposure to androstenone. Fos-positive receptor cells in the vomeronasal organ of CBA and NZB mice were different, in CBA mice Fos-positive cells were noted in both the basal and apical zones, however, in NZB mice activation was observed only in the apical zone [Current Zoology 56 (6): 813-818, 2010].
基金supported by the MKE(The Ministry of Knowledge Economy,Korea)theITRC(Information Technology Research Center)support program(NIPA-2010-C1090-1021-0010)
文摘This paper presents a novel method for inferring the odor based on neural activities observed from rats' main olfactory bulbs.Multi-channel extra-cellular single unit recordings are done by micro-wire electrodes(Tungsten,50 μm,32 channels)implanted in the mitral/tufted cell layers of the main olfactory bulb of the anesthetized rats to obtain neural responses to various odors.Neural responses as a key feature are measured by subtraction firing rates before stimulus from after.For odor inference,a decoding method is developed based on the ML estimation.The results show that the average decoding accuracy is about 100.0%,96.0%,and 80.0% with three rats,respectively.This work has profound implications for a novel brain-machine interface system for odor inference.
基金Supported by a Grant from the National Natural Sciences Foundation of China(No.30973792)
文摘OBJECTIVE: To investigate the effects of combined acupuncture and eugenol on learning-memory ability and the antioxidation system of the hippocampus in Alzheimer disease (AD) rats. METHODS: Sixty Sprague Dawley rats, weighing (300±10) g, were randomly divided with 10 rats per group into a normal control group, AD model group, AD with cut olfactory nerve group, Xiu three-needle group, eugenol group, and combined acupuncture and eugenol group. The AD model was established by injection of amyloid β1-40 (Aβ 1-40). Morris maze tests were conducted for evaluating the learning-memory ability. Content of malo- ndialdehyde (MDA) and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the hippocampus were detected. RESULTS: The average escape latency and the mean swimming distance in the normal control group, the Xiu three-needle group, the eugenol group, and the combined acupuncture and euge-nol group were significantly shorter than those in the AD model group (all P<0.01). The combined acupuncture and eugenol group had shorter escape latency and mean swimming distance than those in the Xiu three-needle group and the eugenol group. There were no significant differences between the Xiu three-needle group and the eugenol group and between the AD group and the AD with cut olfactory nerve group (P>0.05). Compared with the normal control group, the MDA content in the hippocampus significantly increased (P<0.05) and GSH-Px and SOD activities significantly decreased in the AD model group (P<0.01). Compared with the AD model group, significantly decreased (P< 0.01) and SOD and GSH-Px activities significantly increased in the Xiu three-needle group, eugenol group, and combined acupuncture and eugenol group (P<0.05). Compared with the Xiu three-needle group and eugenol group, the MDA content significantly decreased (P<0.05) and SOD and GSH-Px activities increased (P<0.05) in the combined acupuncture and eugenol group. There were no significant differences among the three indices between the Xiu three-needle group and the eugenol group and between the AD model group and the AD with cut olfactory nerve group (P>0.05). CONCLUSION: Both Xiu three-needle and eugenol can increase learning-memory ability, decrease MDA content, and increase SOD and GSH-Px activities in the hippocampus in AD rats. The combination of acupuncture with eugenol has stronger effects, and the effects depend on the olfactory pathway.
基金Project supported by the National Natural Science Foundation of China (Nos. 60874098 and 60911130129)the High-Tech Research and Development Program (863) of China (No. 2007AA042103)+1 种基金the National Creative Research Groups Science Foundation of China (No. 60721062)the Project of Introducing Talents for Chinese University Disciplinal Innovation (111 Project, No. B07031)
文摘In this paper, a novel bionic model and its performance in pattern recognition are presented and discussed. The model is constructed from a bulb model and a three-layered cortical model, mimicking the main features of the olfactory system. The olfactory bulb and cortex models are connected by feedforward and feedback fibers with distributed delays. The Breast Cancer Wisconsin dataset consisting of data from 683 patients divided into benign and malignant classes is used to demonstrate the capacity of the model to learn and recognize patterns, even when these are deformed versions of the originally learned patterns. The performance of the novel model was compared with three artificial neural networks (ANNs), a back-propagation network, a support vector machine classifier, and a radial basis function classifier. All the ANNs and the olfactory bionic model were tested in a benchmark study of a standard dataset. Experimental results show that the bionic olfactory system model can learn and classify patterns based on a small training set and a few learning trials to reflect biological intelligence to some extent.
基金supported by the National Natural Science Foundation of China (Grant Nos. 30300083,30800248,60875078,and 81171416)the Natural Science Foundation of Zhejiang Province (Grant No.Z1080300)
文摘In recent years the evolution of olfactory bulb periglomerular cells,as well as the function of periglomerular cells in olfactory encoding,has attracted increasing attention.Studies of neural information encoding based on the analysis of simulation and modeling have given rise to electrophysiological models of periglomerular cells,which have an important role in the understanding of the biology of these cells.In this review we provide a brief introduction to the anatomy of the olfactory system and the cell types in the olfactory bulb.We elaborate on the latest progress in the study of the heterogeneity of periglomerular cells based on different classification criteria,such as molecular markers,structure,ion channels and action potentials.Then,we discuss the several existing electrophysiological models of periglomerular cells,and we highlight the problems and defects of these models.Finally,considering our present work,we propose a future direction for electrophysiological investigations of periglomerular cells and for the modeling of periglomerular cells and olfactory information encoding.