Electrochemical measurements were carried out to elucidate decomposition mechanism of pentlandite using modified powder microelectrode with Acidithiobacillus ferrooxidans attached or without on the mineral powder surf...Electrochemical measurements were carried out to elucidate decomposition mechanism of pentlandite using modified powder microelectrode with Acidithiobacillus ferrooxidans attached or without on the mineral powder surface.Cyclic voltammetry(CV) results show that at a low potential of about-0.2 V(vs SCE),the pentlandite was transformed to an intermediated phase like Fe4.5-yNi4.5-xS8-z when Fe and Ni ions were evacuated from mineral lattice;when the potential was changed from-0.2 V to 0.2 V,the unstable violarite(Fe3Ni3S4) and FeNi2S4 were formed which was accompanied by element sulfur formed on the mineral surface;when the potential increased over 0.2 V,the unstable intermediated phase decomposed entirely;at a higher potential of 0.7 V,the evacuated ferrous ion was oxidized to ferric ion.The presence of Acidithiobacillus ferrooxidans made the oxidation peak current increase with initial peak potential negatively moving,and the bacteria also contributed to the sulfur removing from mineral surface,which was demonstrated by the reduction characteristic at potential ranging from-0.75 to-0.5 V.Leaching experiments and electrochemical results show that the solution acidity increasing when pH2 may impede the oxidation process slightly.展开更多
The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphi...The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphilum cultured using different energy sources(either soluble ferrous ion or chalcopyrite) were used.The adhesion of bacteria to the chalcopyrite surface was a fast process.Additionally,the adsorption of substrate-grown bacteria was greater and faster than that of liquid-grown ones.The isoelectric point(IEP) of chalcopyrite moved toward that of pure L.ferriphilum after conditioning with bacteria.The chalcopyrite contact angle curves motioned diversely in the culture with or without energy source.The results of X-ray diffraction patterns(XRD),scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDS) analysis indicate that the surface of chalcopyrite is covered with sulfur and jarosite during the bioleaching process by L.ferriphilum.Furthermore,EDS results imply that iron phase dissolves preferentially from chalcopyrite surface during bioleaching.The copper extraction is low,resulting from the formation of a passivation layer on the surface of chalcopyrite.The major component of the passivation layer that blocked continuous copper extraction is sulfur instead of jarosite.展开更多
The efficiency of a new cryoprotectant,GP,for the preservation of Acidithiobacillus ferrooxidans(A.ferrooxidans) strain DC in liquid nitrogen was investigated.The optimal concentration of this new cryoprotectant for...The efficiency of a new cryoprotectant,GP,for the preservation of Acidithiobacillus ferrooxidans(A.ferrooxidans) strain DC in liquid nitrogen was investigated.The optimal concentration of this new cryoprotectant for the maximal viable cell recovery and the highest ferrous ion oxidation activity was determined.The results show that 30%(volume fraction) GP is optimal for the cryopreservation with 84.4% of cells surviving,completely oxidizing ferrous ions within 120 h,and growing to a final density of 5.8×107 cell/mL after 6 d in the culture.Furthermore,the optimal residual GP concentration for viable cell recovery after culture of thawed cells in 9K medium for 6 d is 0.6%(volume fraction).At this concentration,strain DC completely oxidizes ferrous ions within 108 h and grows to a final cell density of 6.8×107 mL-1.Thus,GP is a simple,effective cryoprotectant for the preservation of A.ferrooxidans strain DC in liquid nitrogen.展开更多
The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleachi...The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleaching. The results indicate that the extracellular protein is always more than the extracellular polysaccharide secreted by attached cells on the chalcopyrite, on the contrary, and is always less than the extracellular polysaccharide secreted by free cells in the solution at bacterial adaptive phase, logarithmic phase and stationary phase whenever pH value is at 1.0, 1.5, 2.0 or 2.5; free cells are mainly through the secretion of extracellular polysaccharide rather than the extracellular protein to fight against disadvantageous solution environment, such as high concentration of metal ions and unsuitable pH solution; both amounts of polysaccharide and protein secreted by attached cells are mainly positively related to the solution acidity rather than the total concentration of soluble metal ions. The experimental results imply that bacteria are mainly through secreting more extracellular polysaccharide to fight against disadvantageous environment and the extracellular protein perhaps plays an important role in oxidation?reduction reactions in the bioleaching system.展开更多
In order to determine the mechanism of bacterial tolerance to fluorine,Acidithiobacillus ferrooxidans ATCC 23270 was domesticated and studied under the conditions of different fluorine concentrations and pH values wit...In order to determine the mechanism of bacterial tolerance to fluorine,Acidithiobacillus ferrooxidans ATCC 23270 was domesticated and studied under the conditions of different fluorine concentrations and pH values with or without treatment by Proteinase K.The bacterial activities were observed through measuring the changes of solution potentials by platinum electrode with Ag/AgCl reference electrode and the intracellular fluorine was determined by-uorine ion-selective electrode.The results indicated that the tolerance of Acidithiobacillus ferrooxidans ATCC 23270 to fluorine could be obviously improved by domestication,HF was the effective form of fluorine to affect the bacterial activity,and pH increase or concentration change of ions of strong complex ability with fluorine ions in solution could result in false appearance of high fluorine-resistant strain.Some proteins located in cell wall or cell membrane were intimately relative with the bacterial fluorine tolerance.展开更多
To reveal the intraspecific evolution of Leptospirillum ferriphilum isolates which thrived in industrial bioleaching ecosystems and acid mine drainages,genome sequences of L.ferriphilum YSK,L.ferriphilum DX and L.ferr...To reveal the intraspecific evolution of Leptospirillum ferriphilum isolates which thrived in industrial bioleaching ecosystems and acid mine drainages,genome sequences of L.ferriphilum YSK,L.ferriphilum DX and L.ferriphilum ZJ were determined to compare with complete genome of L.ferriphilum ML-04.The genome comparisons reveal that extensive intraspecific variation occurs in their genomes,and that the loss and insertion of novel gene blocks of probable phage origin may mostly contribute to heterogeneity of gene content among L.ferriphilum genomes.Surprisingly,a nif gene cluster is identified in L.ferriphilum YSK and L.ferriphilum ZJ genomes.Intensive analysis and further experiments indicate that the nif gene cluster in L.ferriphilum YSK inherits from ancestor rather than lateral gene transfer.Overall,results suggest that the population of L.ferriphilum undergoes frequent genetic recombination,resulting in many closely related genome types in recent evolution.The combinatorial processes profoundly shape their physiologies and provide the basis for adaptation to different niches.展开更多
The precipitation of jarosite adversely affects the bio-leaching of copper sulfides in the Sarcheshmeh heap bio-leaching process. The variables of the initial concentration of ferrous iron in the growth medium, pH, an...The precipitation of jarosite adversely affects the bio-leaching of copper sulfides in the Sarcheshmeh heap bio-leaching process. The variables of the initial concentration of ferrous iron in the growth medium, pH, and temperature were examined in the laboratory to determine how they affect the precipitation of jarosite in the presence of Acidithiobacillus ferrooxidans bacteria. It was found that the maximum ferric precipitate occurred at a ferrous sulfate concentration of 50 g/L, a temperature of 32 ℃, and an initial pH value of 2.2. The effects of the precipitation of ferric iron on the quantities of ions that are important for A. ferrooxidans bacteria in aqueous phase, i.e., ferric, sulfate, potassium, phosphate, and magnesium ions, also were assessed. The results showed relatively similar patterns for the ferric and potassium ions, and then reason might have been the co-precipitation of these ions as constituent elements of jarosite mineral. At pH values greater than 1.6, the solubility of phosphate ions decreased dramatically due to the co-precipitation of phosphate ions with the jarosite precipitate and due to the significant growth rate of A. ferrooxidans bacteria in this pH range. Due to the dissolution of a gangue constituent in the ore, the magnesium levels increased in the first few days of the bio-leaching process;thereafter, it decreased slightly.展开更多
The effects of photogenerated-hole scavengers(ascorbic acid,oxalic acid,humic acid and citric acid)on chalcopyrite bioleaching in the presence of visible light were studied using Acidithiobacillus ferrooxidans(A.ferro...The effects of photogenerated-hole scavengers(ascorbic acid,oxalic acid,humic acid and citric acid)on chalcopyrite bioleaching in the presence of visible light were studied using Acidithiobacillus ferrooxidans(A.ferrooxidans).Four sets of bioleaching experiments were performed:(1)visible light+0 g/L scavenger,(2)visible light+0.1 g/L of different scavenger(ascorbic acid,oxalic acid,humic acid and citric acid),(3)dark+0.1 g/L of different scavenger(ascorbic acid,oxalic acid,humic acid and citric acid),and(4)dark+0 g/L scavenger(control group).The results showed that ascorbic acid and oxalic acid could act as photogenerated-hole scavengers and significantly enhance chalcopyrite bioleaching under visible light.The dissolved copper in the light group without scavenger was only 18.7%higher than that of the control group.The copper extraction rates of the light groups with oxalic acid and ascorbic acid were respectively 30.1%and 32.5%higher than those of the control group.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)analyses indicated that ascorbic acid and oxalic acid as photogenerated-hole scavenger could capture photo-generated holes and inhibit jarosite formation on the chalcopyrite surface,thereby enhancing bioleaching of chalcopyrite under visible light.展开更多
This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial desig...This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.展开更多
基金Project(20876014) supported by the National Natural Science Foundation of China
文摘Electrochemical measurements were carried out to elucidate decomposition mechanism of pentlandite using modified powder microelectrode with Acidithiobacillus ferrooxidans attached or without on the mineral powder surface.Cyclic voltammetry(CV) results show that at a low potential of about-0.2 V(vs SCE),the pentlandite was transformed to an intermediated phase like Fe4.5-yNi4.5-xS8-z when Fe and Ni ions were evacuated from mineral lattice;when the potential was changed from-0.2 V to 0.2 V,the unstable violarite(Fe3Ni3S4) and FeNi2S4 were formed which was accompanied by element sulfur formed on the mineral surface;when the potential increased over 0.2 V,the unstable intermediated phase decomposed entirely;at a higher potential of 0.7 V,the evacuated ferrous ion was oxidized to ferric ion.The presence of Acidithiobacillus ferrooxidans made the oxidation peak current increase with initial peak potential negatively moving,and the bacteria also contributed to the sulfur removing from mineral surface,which was demonstrated by the reduction characteristic at potential ranging from-0.75 to-0.5 V.Leaching experiments and electrochemical results show that the solution acidity increasing when pH2 may impede the oxidation process slightly.
基金Project (2010CB630903) supported by the National Basic Research Program of China
文摘The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphilum cultured using different energy sources(either soluble ferrous ion or chalcopyrite) were used.The adhesion of bacteria to the chalcopyrite surface was a fast process.Additionally,the adsorption of substrate-grown bacteria was greater and faster than that of liquid-grown ones.The isoelectric point(IEP) of chalcopyrite moved toward that of pure L.ferriphilum after conditioning with bacteria.The chalcopyrite contact angle curves motioned diversely in the culture with or without energy source.The results of X-ray diffraction patterns(XRD),scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDS) analysis indicate that the surface of chalcopyrite is covered with sulfur and jarosite during the bioleaching process by L.ferriphilum.Furthermore,EDS results imply that iron phase dissolves preferentially from chalcopyrite surface during bioleaching.The copper extraction is low,resulting from the formation of a passivation layer on the surface of chalcopyrite.The major component of the passivation layer that blocked continuous copper extraction is sulfur instead of jarosite.
基金Project(2005DKA21208) supported by the R&D Infrastructure and Facility Development Program from the Ministry of Science and Technology of ChinaProject(2010CB630901) supported by the National Basic Research Program of China
文摘The efficiency of a new cryoprotectant,GP,for the preservation of Acidithiobacillus ferrooxidans(A.ferrooxidans) strain DC in liquid nitrogen was investigated.The optimal concentration of this new cryoprotectant for the maximal viable cell recovery and the highest ferrous ion oxidation activity was determined.The results show that 30%(volume fraction) GP is optimal for the cryopreservation with 84.4% of cells surviving,completely oxidizing ferrous ions within 120 h,and growing to a final density of 5.8×107 cell/mL after 6 d in the culture.Furthermore,the optimal residual GP concentration for viable cell recovery after culture of thawed cells in 9K medium for 6 d is 0.6%(volume fraction).At this concentration,strain DC completely oxidizes ferrous ions within 108 h and grows to a final cell density of 6.8×107 mL-1.Thus,GP is a simple,effective cryoprotectant for the preservation of A.ferrooxidans strain DC in liquid nitrogen.
基金Project(31200382)supported by the National Natural Science Foundation of China
文摘The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleaching. The results indicate that the extracellular protein is always more than the extracellular polysaccharide secreted by attached cells on the chalcopyrite, on the contrary, and is always less than the extracellular polysaccharide secreted by free cells in the solution at bacterial adaptive phase, logarithmic phase and stationary phase whenever pH value is at 1.0, 1.5, 2.0 or 2.5; free cells are mainly through the secretion of extracellular polysaccharide rather than the extracellular protein to fight against disadvantageous solution environment, such as high concentration of metal ions and unsuitable pH solution; both amounts of polysaccharide and protein secreted by attached cells are mainly positively related to the solution acidity rather than the total concentration of soluble metal ions. The experimental results imply that bacteria are mainly through secreting more extracellular polysaccharide to fight against disadvantageous environment and the extracellular protein perhaps plays an important role in oxidation?reduction reactions in the bioleaching system.
基金Project(2010CB630903) supported by the National Basic Research Program of China
文摘In order to determine the mechanism of bacterial tolerance to fluorine,Acidithiobacillus ferrooxidans ATCC 23270 was domesticated and studied under the conditions of different fluorine concentrations and pH values with or without treatment by Proteinase K.The bacterial activities were observed through measuring the changes of solution potentials by platinum electrode with Ag/AgCl reference electrode and the intracellular fluorine was determined by-uorine ion-selective electrode.The results indicated that the tolerance of Acidithiobacillus ferrooxidans ATCC 23270 to fluorine could be obviously improved by domestication,HF was the effective form of fluorine to affect the bacterial activity,and pH increase or concentration change of ions of strong complex ability with fluorine ions in solution could result in false appearance of high fluorine-resistant strain.Some proteins located in cell wall or cell membrane were intimately relative with the bacterial fluorine tolerance.
基金Project(2018YFC1801804)supported by the National Key R&D Program of ChinaProjects(2016JJ3146,2017JJ3160)supported by the Natural Science Foundation of Hunan Province,China。
文摘To reveal the intraspecific evolution of Leptospirillum ferriphilum isolates which thrived in industrial bioleaching ecosystems and acid mine drainages,genome sequences of L.ferriphilum YSK,L.ferriphilum DX and L.ferriphilum ZJ were determined to compare with complete genome of L.ferriphilum ML-04.The genome comparisons reveal that extensive intraspecific variation occurs in their genomes,and that the loss and insertion of novel gene blocks of probable phage origin may mostly contribute to heterogeneity of gene content among L.ferriphilum genomes.Surprisingly,a nif gene cluster is identified in L.ferriphilum YSK and L.ferriphilum ZJ genomes.Intensive analysis and further experiments indicate that the nif gene cluster in L.ferriphilum YSK inherits from ancestor rather than lateral gene transfer.Overall,results suggest that the population of L.ferriphilum undergoes frequent genetic recombination,resulting in many closely related genome types in recent evolution.The combinatorial processes profoundly shape their physiologies and provide the basis for adaptation to different niches.
基金support provided by the R&D division of the Sarcheshmeh Copper Complex and Tehran Science and Research Branch at Islamic Azad University
文摘The precipitation of jarosite adversely affects the bio-leaching of copper sulfides in the Sarcheshmeh heap bio-leaching process. The variables of the initial concentration of ferrous iron in the growth medium, pH, and temperature were examined in the laboratory to determine how they affect the precipitation of jarosite in the presence of Acidithiobacillus ferrooxidans bacteria. It was found that the maximum ferric precipitate occurred at a ferrous sulfate concentration of 50 g/L, a temperature of 32 ℃, and an initial pH value of 2.2. The effects of the precipitation of ferric iron on the quantities of ions that are important for A. ferrooxidans bacteria in aqueous phase, i.e., ferric, sulfate, potassium, phosphate, and magnesium ions, also were assessed. The results showed relatively similar patterns for the ferric and potassium ions, and then reason might have been the co-precipitation of these ions as constituent elements of jarosite mineral. At pH values greater than 1.6, the solubility of phosphate ions decreased dramatically due to the co-precipitation of phosphate ions with the jarosite precipitate and due to the significant growth rate of A. ferrooxidans bacteria in this pH range. Due to the dissolution of a gangue constituent in the ore, the magnesium levels increased in the first few days of the bio-leaching process;thereafter, it decreased slightly.
基金Project(41773089)supported by the National Natural Science Foundation of ChinaProject(2017SK2255)supported by the Key R&D Program of Hunan Province,China+2 种基金Project(2015CNERC-CTHMP-05)supported by the Opening Foundation of the Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution,ChinaProject(CX20190136)supported by the Hunan Provincial Innovation Foundation for Postgraduates,ChinaProject(CSUZC201808)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China.
文摘The effects of photogenerated-hole scavengers(ascorbic acid,oxalic acid,humic acid and citric acid)on chalcopyrite bioleaching in the presence of visible light were studied using Acidithiobacillus ferrooxidans(A.ferrooxidans).Four sets of bioleaching experiments were performed:(1)visible light+0 g/L scavenger,(2)visible light+0.1 g/L of different scavenger(ascorbic acid,oxalic acid,humic acid and citric acid),(3)dark+0.1 g/L of different scavenger(ascorbic acid,oxalic acid,humic acid and citric acid),and(4)dark+0 g/L scavenger(control group).The results showed that ascorbic acid and oxalic acid could act as photogenerated-hole scavengers and significantly enhance chalcopyrite bioleaching under visible light.The dissolved copper in the light group without scavenger was only 18.7%higher than that of the control group.The copper extraction rates of the light groups with oxalic acid and ascorbic acid were respectively 30.1%and 32.5%higher than those of the control group.Scanning electron microscopy(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)analyses indicated that ascorbic acid and oxalic acid as photogenerated-hole scavenger could capture photo-generated holes and inhibit jarosite formation on the chalcopyrite surface,thereby enhancing bioleaching of chalcopyrite under visible light.
基金the Tarbiat Modares University & Nuclear Science and Technology Research Institute for their financial support
文摘This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.