期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Comparison Theorem on Cartan-Hartogs Domain of the Fourth Type 被引量:3
1
作者 林萍 殷慰萍 《数学进展》 CSCD 北大核心 2003年第1期124-126,共3页
As is known to all, theory of invariant metric is very important inseveral complex analysis.The Bergman, Caratheodory and Kobayashi metrics are important biholomorphic. invariants.They play very important role in stud... As is known to all, theory of invariant metric is very important inseveral complex analysis.The Bergman, Caratheodory and Kobayashi metrics are important biholomorphic. invariants.They play very important role in studying the boundary geometry of the domain and biholo-morphic mappings extending smoothly to the boundaries of the relevant domains. 展开更多
关键词 嘉当区域 第四类型 度量理论 比较定理
下载PDF
RESEARCH ANNOUNCEMENTS Einstein-Khler Metric on Cartan-Hartogs Domain of the First Type 被引量:3
2
作者 王安 殷慰萍 《数学进展》 CSCD 北大核心 2003年第1期121-123,共3页
S. Y. Cheng and S. T. Yau showed in [CY] that any C2 bounded pseudoconvex domain in C?has a complete Einstein-Kahler metric with constant negative Ricci curvature. N. Mok and S. T. Yau[MY] have extended this result to... S. Y. Cheng and S. T. Yau showed in [CY] that any C2 bounded pseudoconvex domain in C?has a complete Einstein-Kahler metric with constant negative Ricci curvature. N. Mok and S. T. Yau[MY] have extended this result to arbitrary bounded pseudoconvex domain in Cn. Complete Einstein-Kahler metric with Explicit form, however, is only known in the case of homogeneous domain. 展开更多
关键词 爱因斯坦-Kaehler度量 嘉当区域 第一类型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部