The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytica...The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytical expressions of the temperature dependent performance,such as breakdown characteristics and on resistance of 6H SiC unipolar power devices are derived in a closed form.The analytical results are compared with the experimental results,with good accordance found in the breakdown characteristics.展开更多
A sapphire fiber thermal probe with Cr^3+ ion-doped end was grown using the laser heated pedestal method. The fluorescence thermal probe offers advantages of compact structure, high performance and the ability to sus...A sapphire fiber thermal probe with Cr^3+ ion-doped end was grown using the laser heated pedestal method. The fluorescence thermal probe offers advantages of compact structure, high performance and the ability to sustain high temperature from the room temperature to 450℃. Based on the fast fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of the phase angle of the first non-zeroth item of FFT result. Compared with other traditional fitting methods, our method has advantages such as fast speed, high accuracy and being free from the influence of the base signal. The standard deviation of FFT method is about half of that method. In addition, since the FFT method is immunity to analysis can be skipped. of the Prony method and close to the one of the Marquardt the background noise of the signal, the background noise展开更多
A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation betw...A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation between relative shift of Bragg wavelength and the strain applied on the sensor is obtained, and the analytical expression of strain sensitivity coefficient is also given. The experiment results show that: in the strain range of 0-0. 8 mm, the relation between the relative shift of Bragg wavelength and applied strain is linear, and the dispersion of double FBG wavelength at the range of -25℃- 60℃ is 0-0. 002 nm. The strain sensitivity of the displacement sensor configuration is 0. 171 nm/με, and is nearly twice than that of single FBG sensor.展开更多
A theoretical calculation for the temperature dependence of the excitonic transition in ZnSe/ZnOdSe quantum wells is performed. The exciton binding energy is calculated with a variational technique by considering the ...A theoretical calculation for the temperature dependence of the excitonic transition in ZnSe/ZnOdSe quantum wells is performed. The exciton binding energy is calculated with a variational technique by considering the temperature-dependence parameters. Our results show that the exciton binding energy reduces linearly with temperature increasing. We find that the strain due to lattice mismatch and differential thermal expansion decreases with the temperature increasing.展开更多
Thermoelectric devices require thermoelectric materials with high figure-of-merit(ZT)values in the operating temperature range.In recent years,the Zintl phase compound,n-Mg_(3)Sb_(2),has received much attention owing ...Thermoelectric devices require thermoelectric materials with high figure-of-merit(ZT)values in the operating temperature range.In recent years,the Zintl phase compound,n-Mg_(3)Sb_(2),has received much attention owing to its rich chemistry and structural complexity.However,it hardly achieves high ZT values throughout the medium temperature range.Herein,by increasing the sintering temperature as much as possible,we successfully increased the average grain size of the compound by 15 times,and the grain boundary scattering was manipulated to obtain high carrier mobility of up to 180 cm^(2)V^(-1)s^(-1).Simultaneously,we optimized the Mg content for ultralow lattice thermal conductivity.We first doped the Mg_(3)Sb_(2)-based materials with boron for higher sintering temperature,good thermal stability,and higher hardness.The synergistic optimization of electrical and thermal transport resulted in excellent ZT values(0.62 at 300 K,1.81 at 773 K)and an average ZT of 1.4(from300 to 773 K),which are higher than the state-of-the-art values for n-type thermoelectric materials,demonstrating a high potential in device applications.展开更多
We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistan...We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metalinsulator transition in the normal state. The critical current density(J_c) of the microbridge with a thickness of 136.2 nm was82.3 kA/cm^2 at 3K and reached 105 kA/cm^2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.展开更多
In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, ...In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed - matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.展开更多
Common solar-driven photoelectrochemical(PEC) cells for water splitting were designed by using semiconducting photoactive materials as working photoelectrodes to capture sunlight. Due to the thermodynamic requirement ...Common solar-driven photoelectrochemical(PEC) cells for water splitting were designed by using semiconducting photoactive materials as working photoelectrodes to capture sunlight. Due to the thermodynamic requirement of 1.23 eV and kinetic energy loss of about 0.6 eV, a photo-voltage of 1.8 V produced by PEC cells is generally required for spontaneous water splitting. Therefore, the minimum bandgap of1.8 eV is demanded for photoactive materials in single-photoelectrode PEC cells, and the bandgap of about 1 eV for back photoactive materials is appropriate in tandem PEC cells. All these PEC cells cannot effectively utilize the infrared light from 1250 to 2500 nm. In order to realize the full spectrum utilization of solar light, here, we develop a solar-driven PEC water splitting system integrated with a thermoelectric device. The key feature of this system is that the thermoelectric device produces a voltage as an additional bias for the PEC system by using the temperature difference between the incident infrared-light heated aqueous electrolyte in the PEC cell as the hot source and unirradiated external water as the cold source. Compared to a reference PEC system without the thermoelectric device, this system has a significantly improved overall water splitting activity of 1.6 times and may provide a strategy for accelerating the application of full spectrum solar light-driven PEC cells for hydrogen production.展开更多
High performance piezoelectric ceramics with high Curie temperatures(TC) are the bottle necks of relevant high temperature devices. In this study, the electrical performance and microstructure of Li and Mn codoped Aur...High performance piezoelectric ceramics with high Curie temperatures(TC) are the bottle necks of relevant high temperature devices. In this study, the electrical performance and microstructure of Li and Mn codoped Aurivillius-type composite ceramics with a composition Ca_(0.99-x_Bi_(6.99+x)(Li Mn)_(0.01) Nb Ti_5O_(24)(x = 0–0.8) were systematically investigated. The results indicated that uniform intergrowth structure with a lattice similar to that of the end member CBT could be formed at a low x value(x < 0.4). Phase separation occurred when more A-site Ca^(2+) ions were replaced by Bi^(3+) ions. Nevertheless, all composite samples showed d_(33) values about 2 to 3 times of that of the constituent phase Ca Bi_4Ti_4O_(15) and Bi_3 Ti NbO_9 with still a high depolarization temperature. The performance of the samples was found to be related to the density and larger lattice distortion along the polarization a axis. The results also demonstrated that formation of the compound system was an effective way in improving the performance of Aurivillius-type high TC piezoelectric ceramics.展开更多
文摘The temperature dependence of some performance of 6H SiC unipolar power devices is analyzed theoretically.By employing the temperature dependent ionization coefficient and mobility of a silicon carbide,the analytical expressions of the temperature dependent performance,such as breakdown characteristics and on resistance of 6H SiC unipolar power devices are derived in a closed form.The analytical results are compared with the experimental results,with good accordance found in the breakdown characteristics.
基金the Natural Science Research Foundation of Education Bureau of Hebei Province, China (Grant No.2001265)
文摘A sapphire fiber thermal probe with Cr^3+ ion-doped end was grown using the laser heated pedestal method. The fluorescence thermal probe offers advantages of compact structure, high performance and the ability to sustain high temperature from the room temperature to 450℃. Based on the fast fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of the phase angle of the first non-zeroth item of FFT result. Compared with other traditional fitting methods, our method has advantages such as fast speed, high accuracy and being free from the influence of the base signal. The standard deviation of FFT method is about half of that method. In addition, since the FFT method is immunity to analysis can be skipped. of the Prony method and close to the one of the Marquardt the background noise of the signal, the background noise
文摘A novel double fiber Bragg grating(FBG) strain sensor configuration is presented. Temperature compensation method is based on double FBG moored on a rhombus frame. Through the theoretical analysis, the relation between relative shift of Bragg wavelength and the strain applied on the sensor is obtained, and the analytical expression of strain sensitivity coefficient is also given. The experiment results show that: in the strain range of 0-0. 8 mm, the relation between the relative shift of Bragg wavelength and applied strain is linear, and the dispersion of double FBG wavelength at the range of -25℃- 60℃ is 0-0. 002 nm. The strain sensitivity of the displacement sensor configuration is 0. 171 nm/με, and is nearly twice than that of single FBG sensor.
基金Foundationitem:Project supported by the National Natural Sci-ence Foundation of China(60166002)
文摘A theoretical calculation for the temperature dependence of the excitonic transition in ZnSe/ZnOdSe quantum wells is performed. The exciton binding energy is calculated with a variational technique by considering the temperature-dependence parameters. Our results show that the exciton binding energy reduces linearly with temperature increasing. We find that the strain due to lattice mismatch and differential thermal expansion decreases with the temperature increasing.
基金supported by the National Natural Science Foundation of China(51771065 and 51871082)the Natural Science Foundation of Heilongjiang Province of China(ZD2020E003)。
文摘Thermoelectric devices require thermoelectric materials with high figure-of-merit(ZT)values in the operating temperature range.In recent years,the Zintl phase compound,n-Mg_(3)Sb_(2),has received much attention owing to its rich chemistry and structural complexity.However,it hardly achieves high ZT values throughout the medium temperature range.Herein,by increasing the sintering temperature as much as possible,we successfully increased the average grain size of the compound by 15 times,and the grain boundary scattering was manipulated to obtain high carrier mobility of up to 180 cm^(2)V^(-1)s^(-1).Simultaneously,we optimized the Mg content for ultralow lattice thermal conductivity.We first doped the Mg_(3)Sb_(2)-based materials with boron for higher sintering temperature,good thermal stability,and higher hardness.The synergistic optimization of electrical and thermal transport resulted in excellent ZT values(0.62 at 300 K,1.81 at 773 K)and an average ZT of 1.4(from300 to 773 K),which are higher than the state-of-the-art values for n-type thermoelectric materials,demonstrating a high potential in device applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11234006,61501220,U1432135,11674054,and 11611140101)Jiangsu Provincial Natural Science Fund(Grant No.SBK2015040804)Opening Project of Wuhan National High Magnetic Field Center(Grant No.2015KF19)
文摘We investigated the superconducting properties of Fe_(1+y)Te_(0:6)Se_(0:4) single-crystalline microbridges with a width of 4 m and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metalinsulator transition in the normal state. The critical current density(J_c) of the microbridge with a thickness of 136.2 nm was82.3 kA/cm^2 at 3K and reached 105 kA/cm^2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.
基金supported by the National Basic Research Program of China"973"Program)(Grant No.2011CB710705)the strategic priority research program of the Chinese Academy of Sciences(Grant No.XDA03010500)
文摘In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed - matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.
基金This work was supported by the National Natural Science Foundation of China(51825204 and 51629201)the Key Research Program of Frontier Sciences CAS(QYZDB-SSW-JSC039).
文摘Common solar-driven photoelectrochemical(PEC) cells for water splitting were designed by using semiconducting photoactive materials as working photoelectrodes to capture sunlight. Due to the thermodynamic requirement of 1.23 eV and kinetic energy loss of about 0.6 eV, a photo-voltage of 1.8 V produced by PEC cells is generally required for spontaneous water splitting. Therefore, the minimum bandgap of1.8 eV is demanded for photoactive materials in single-photoelectrode PEC cells, and the bandgap of about 1 eV for back photoactive materials is appropriate in tandem PEC cells. All these PEC cells cannot effectively utilize the infrared light from 1250 to 2500 nm. In order to realize the full spectrum utilization of solar light, here, we develop a solar-driven PEC water splitting system integrated with a thermoelectric device. The key feature of this system is that the thermoelectric device produces a voltage as an additional bias for the PEC system by using the temperature difference between the incident infrared-light heated aqueous electrolyte in the PEC cell as the hot source and unirradiated external water as the cold source. Compared to a reference PEC system without the thermoelectric device, this system has a significantly improved overall water splitting activity of 1.6 times and may provide a strategy for accelerating the application of full spectrum solar light-driven PEC cells for hydrogen production.
基金supported by the National Natural Science Foundation of China(Grant Nos.51302015&11574346)the National Basic Research Program of China(“973”Project)(Grant No.2013CB632900)+1 种基金the Overseas Talent Foundation of Beijing Academy of Science and Technology(Grant No.OTP-2013-001)the Open Foundation of the State Key Laboratory of New Ceramics and Fine Processing of Tsinghua University
文摘High performance piezoelectric ceramics with high Curie temperatures(TC) are the bottle necks of relevant high temperature devices. In this study, the electrical performance and microstructure of Li and Mn codoped Aurivillius-type composite ceramics with a composition Ca_(0.99-x_Bi_(6.99+x)(Li Mn)_(0.01) Nb Ti_5O_(24)(x = 0–0.8) were systematically investigated. The results indicated that uniform intergrowth structure with a lattice similar to that of the end member CBT could be formed at a low x value(x < 0.4). Phase separation occurred when more A-site Ca^(2+) ions were replaced by Bi^(3+) ions. Nevertheless, all composite samples showed d_(33) values about 2 to 3 times of that of the constituent phase Ca Bi_4Ti_4O_(15) and Bi_3 Ti NbO_9 with still a high depolarization temperature. The performance of the samples was found to be related to the density and larger lattice distortion along the polarization a axis. The results also demonstrated that formation of the compound system was an effective way in improving the performance of Aurivillius-type high TC piezoelectric ceramics.