In this paper we study the mean first passage time (MFPT) over a fluctuation potential barrier driven by a coupled noise. It is shown that the MFPT over the fluctuation potential barrier displays resonant activation...In this paper we study the mean first passage time (MFPT) over a fluctuation potential barrier driven by a coupled noise. It is shown that the MFPT over the fluctuation potential barrier displays resonant activations as the function of the flipping rate of the fluctuation potential barrier, and as the function of the dichotomous noise transition rate.展开更多
In this paper, we study a fluctuating potential barrier system with correlated spatial noises. Study shows that for this system, there is the resonant activation over the fluctuating potential barrier, and that the co...In this paper, we study a fluctuating potential barrier system with correlated spatial noises. Study shows that for this system, there is the resonant activation over the fluctuating potential barrier, and that the correlation between the different spatial noises can enhance (or weaken) the resonant activation.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10375009, and the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry and by K.C. Wong Magna Fund in Ningbo University
文摘In this paper we study the mean first passage time (MFPT) over a fluctuation potential barrier driven by a coupled noise. It is shown that the MFPT over the fluctuation potential barrier displays resonant activations as the function of the flipping rate of the fluctuation potential barrier, and as the function of the dichotomous noise transition rate.
文摘In this paper, we study a fluctuating potential barrier system with correlated spatial noises. Study shows that for this system, there is the resonant activation over the fluctuating potential barrier, and that the correlation between the different spatial noises can enhance (or weaken) the resonant activation.