期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Low-dose CT image denoising method based on generative adversarial network
1
作者 JIAO Fengyuan YANG Zhixiu +1 位作者 SHI Shaojie CAO Weiguo 《Journal of Measurement Science and Instrumentation》 CAS 2024年第4期490-498,共9页
In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial netw... In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect. 展开更多
关键词 low-dose CT image generative adversarial network noise and artifacts encoder-decoder atrous spatial pyramid pooling(ASPP)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部