用PM(Perona and Malik)模型去除椒盐噪声,使低噪声强度下未受噪的平坦区域的像素值减小,但是不能在有效去噪的同时保护纹理细节,导致图像模糊。为此,用局部方差和高斯曲率代替梯度模值来描述图像局部纹理细节,并定义了噪声度量函数,随...用PM(Perona and Malik)模型去除椒盐噪声,使低噪声强度下未受噪的平坦区域的像素值减小,但是不能在有效去噪的同时保护纹理细节,导致图像模糊。为此,用局部方差和高斯曲率代替梯度模值来描述图像局部纹理细节,并定义了噪声度量函数,随之引入扩散方程,得到新去噪模型。实验结果表明:新模型不仅能有效地除去椒盐噪声和解决PM模型的问题,而且信噪比和峰值信噪比均有显著提高。因此新模型优于PM模型。展开更多
文摘用PM(Perona and Malik)模型去除椒盐噪声,使低噪声强度下未受噪的平坦区域的像素值减小,但是不能在有效去噪的同时保护纹理细节,导致图像模糊。为此,用局部方差和高斯曲率代替梯度模值来描述图像局部纹理细节,并定义了噪声度量函数,随之引入扩散方程,得到新去噪模型。实验结果表明:新模型不仅能有效地除去椒盐噪声和解决PM模型的问题,而且信噪比和峰值信噪比均有显著提高。因此新模型优于PM模型。