A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM...A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM) and digital audio broadcasting (DAB) systems is realized and characterized. The conventional cross-coupled n-type metal oxide semiconductor (NMOS) transistors are replaced by p-type metal oxide semiconductor (PMOS) transistors to decrease the phase noise in the core part of the crystal oscillator. A symmetry structure of the current mirror is adopted to increase the stability of direct current. The amplitude detecting circuit made up of a single- stage CMOS operational transconductance amplifier (OTA) and a simple amplitude detector is used to improve the current accuracy of the output signals. The chip is fabricated in a 0. 18- pxn CMOS process, and the total chip size is 0. 35 mm x 0. 3 mm. Under a supply voltage of 1.8 V, the measured power consumption is 3.6 mW including the output buffer for 50 testing loads. The proposed crystal oscillator exhibits a low phase noise of - 134. 7 dBc/Hz at 1-kHz offset from the center frequency of 37. 5 MHz.展开更多
A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tun...A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.展开更多
This paper presents the design and the experimental measurements of two complementary metal-oxide-semiconductor (CMOS) LC-tuned voltage controlled oscillators (VCO) implemented in a 0.18 μm 6-metal-layer mixed-signal...This paper presents the design and the experimental measurements of two complementary metal-oxide-semiconductor (CMOS) LC-tuned voltage controlled oscillators (VCO) implemented in a 0.18 μm 6-metal-layer mixed-signal/RF CMOS technology. The design methodologies and approaches for the optimization of the ICs are presented. The first design is optimized for mixed-signal transistor, oscillated at 2.64 GHz with a phase noise of -93.5 dBc/Hz at 500 kHz offset. The second one optimized for RF transistor, using the same architecture, oscillated at 2.61 GHz with a phase noise of -95.8 dBc/Hz at 500 kHz offset. Under a 2 V supply, the power dissipation is 8 mW, and the maximum buffered output power for mixed-signal and RF transistor are -7 dBm and -5.4 dBm, respectively. Both kinds of oscillators make use of on-chip components only, allowing for simple and robust integration.展开更多
A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to ex...A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to extend the frequency tuning range, and the phase noise is optimized in the design procedure. The functional relationships between the phase noise and the transistors' width-length ratios are deduced by a linear time variant (LTV) model. The theoretical optimized parameter value ranges are determined. To simplify the calculation, the working region is split into several sub-ranges according to transistor working conditions. Thus, a lot of integrations are avoided, and the phase noise function upon the design variables can be expressed as simple proportion formats. Test results show that the DC current is 8.8 mA under a voltage supply of 1.8 V; the frequency range is 1.17 to 1.90 GHz, and the phase noise reaches - 83 dBc/Hz at a 10 kHz offset from the carrier. The chip size is 1. 2 mm × 0. 9 mm.展开更多
A design and implementation for a 2.4GHz quadrature output frequency synthesizer intended for bluetooth in 0. 35μm CMOS technology are presented. A differentially controlled quadrature voltage-controlled oscillator ...A design and implementation for a 2.4GHz quadrature output frequency synthesizer intended for bluetooth in 0. 35μm CMOS technology are presented. A differentially controlled quadrature voltage-controlled oscillator (QVCO) is employed to generate quadrature (I/Q) signals. A second-order loop filter, with a unit gain transconductance amplifier having the performance of a third-order loop filter,is exploited for low cost. The measured spot phase noise is -106.15dBc/Hz@ 1MHz. Close-in phase noise is less than -70dBc/Hz. The synthesizer consumes 13.5mA under a 3.3V voltage supply. The core size is 1.3mm×0. 8mm.展开更多
A low phase noise quadrature oscillator using the new injection locked technique is proposed. The incident signal is directly injected into the common-source connection of the sub-harmonic oscillator. In principle, th...A low phase noise quadrature oscillator using the new injection locked technique is proposed. The incident signal is directly injected into the common-source connection of the sub-harmonic oscillator. In principle, the phase noise performance of the quadrature output is better than the sub-harmonic oscillator itself. The quadrature oscillator is implemented in a 0. 25μm CMOS process. Measurements show the proposed oscillator could achieve a phase noise of --130dBc/Hz at 1MHz offset from 1. 13GHz carrier while only drawing an 8.0mA current from the 2.5V power supply.展开更多
In order to make a 10 Gbit/s 2:1 half-rate multiplexer operate without external clocks, a 5 Gbit/s clock recovery (CR) circuit is needed to extract the desired clock from one input data. For the CR circuit, a 3-sta...In order to make a 10 Gbit/s 2:1 half-rate multiplexer operate without external clocks, a 5 Gbit/s clock recovery (CR) circuit is needed to extract the desired clock from one input data. For the CR circuit, a 3-stage ring voltage-controlled oscillator (VCO) is employed to avoid an unreliable startup of a 2-stage VCO and a low oscillation frequency of a 4-stage VCO. A phase frequency detector (PFD) is used to expand the pull-in range to meet the wide tuning range of a VCO required by process-voltage-temperature (PVT) variation. SMIC 0. 18-μm CMOS technology is adopted and the core area is 170 μm ×270 μm. Measurements show that, under a 1.8 V supply voltage, it consumes only about 90 mW, and has an input sensitivity of less than 25 mV, an output single-ended swing of above 300 mV, a phase noise of - 114 dBc/Hz at 1 MHz offset and a pull-in range of 1 GHz.展开更多
This paper introduces a 2.5GHz low phase-noise cross-coupled LC-VCO realized in 0.35μm SiGe BiCMOS technology. The conventional definition of a VCO operating regime is revised from a new perspective. Analysis shows t...This paper introduces a 2.5GHz low phase-noise cross-coupled LC-VCO realized in 0.35μm SiGe BiCMOS technology. The conventional definition of a VCO operating regime is revised from a new perspective. Analysis shows the importance of inductance and bias current selection for oscillator phase noise optimization. Differences between CMOS and BJT VCO design strategy are then analyzed and the conclusions are summarized. In this implementation, bonding wires form the resonator to improve the phase noise performance. The VCO is then integrated with other components to form a PLL frequency synthesizer with a loop bandwidth of 30kHz. Measurement shows a phase noise of - 95dBc/Hz at 100kHz offset and - 116dBc/Hz at 1MHz offset from a 2.5GHz carrier. At a supply voltage of 3V, the VCO core consumes 8mA. To our knowledge,this is the first differential cross-coupled VCO in SiGe BiCMOS technology in China.展开更多
A 4. 224GHz quadrature voltage-controlled oscillator (QVCO) applied in MB-OFDM UWB synthesizers is implemented in 0.18μm RF-CMOS technology. An improved structure of the QVCO is presented for better phase noise. A ...A 4. 224GHz quadrature voltage-controlled oscillator (QVCO) applied in MB-OFDM UWB synthesizers is implemented in 0.18μm RF-CMOS technology. An improved structure of the QVCO is presented for better phase noise. A novel configuration of a MOS varactor is designed for good linearity of K as well as a new digital capacitor controlled array topology with lower parasitic capacitance and lower Ron. Measurement results show a phase noise of - 90.4dBc/Hz at 100kHz offset and - 116.7dBc/Hz at 1MHz offset from a carrier close to 4. 224GHz. The power dissipation is 10. 55mW from a 1.8V supply.展开更多
基金The National Natural Science Foundation of China(No. 61106024)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092120012)the Science and Technology Program of South east University (No. KJ2010402)
文摘A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM) and digital audio broadcasting (DAB) systems is realized and characterized. The conventional cross-coupled n-type metal oxide semiconductor (NMOS) transistors are replaced by p-type metal oxide semiconductor (PMOS) transistors to decrease the phase noise in the core part of the crystal oscillator. A symmetry structure of the current mirror is adopted to increase the stability of direct current. The amplitude detecting circuit made up of a single- stage CMOS operational transconductance amplifier (OTA) and a simple amplitude detector is used to improve the current accuracy of the output signals. The chip is fabricated in a 0. 18- pxn CMOS process, and the total chip size is 0. 35 mm x 0. 3 mm. Under a supply voltage of 1.8 V, the measured power consumption is 3.6 mW including the output buffer for 50 testing loads. The proposed crystal oscillator exhibits a low phase noise of - 134. 7 dBc/Hz at 1-kHz offset from the center frequency of 37. 5 MHz.
文摘A 2GHz differentially tuned CMOS monolithic LC-VCO is designed and fabricated in a 0.18μm CMOS process. The VCO has a 16.15% tuning range (from 1. 8998 to 2. 2335GHz) through a combination of analog and digital tuning techniques (4-bit binary switch-capacitor array). The measured phase noise is - 118.17dBc/Hz at a 1MHz offset from a 2. 158GHz carrier. With the presented improved switch,the phase noise varies no more than 3dB at different digital control bits. The phase noise changes only by about 2dB in the tuning range because of the pn-junctions as the varactors. The VCO draws a current of about 2. lmA from a 1.8V power supply and works normally with a 1.5V power supply.
基金TheNationalHighTechnologyResearchandDevelopmentProgramofChina (863Program ) (No .2 0 0 2AA1Z160 0 )
文摘This paper presents the design and the experimental measurements of two complementary metal-oxide-semiconductor (CMOS) LC-tuned voltage controlled oscillators (VCO) implemented in a 0.18 μm 6-metal-layer mixed-signal/RF CMOS technology. The design methodologies and approaches for the optimization of the ICs are presented. The first design is optimized for mixed-signal transistor, oscillated at 2.64 GHz with a phase noise of -93.5 dBc/Hz at 500 kHz offset. The second one optimized for RF transistor, using the same architecture, oscillated at 2.61 GHz with a phase noise of -95.8 dBc/Hz at 500 kHz offset. Under a 2 V supply, the power dissipation is 8 mW, and the maximum buffered output power for mixed-signal and RF transistor are -7 dBm and -5.4 dBm, respectively. Both kinds of oscillators make use of on-chip components only, allowing for simple and robust integration.
文摘A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to extend the frequency tuning range, and the phase noise is optimized in the design procedure. The functional relationships between the phase noise and the transistors' width-length ratios are deduced by a linear time variant (LTV) model. The theoretical optimized parameter value ranges are determined. To simplify the calculation, the working region is split into several sub-ranges according to transistor working conditions. Thus, a lot of integrations are avoided, and the phase noise function upon the design variables can be expressed as simple proportion formats. Test results show that the DC current is 8.8 mA under a voltage supply of 1.8 V; the frequency range is 1.17 to 1.90 GHz, and the phase noise reaches - 83 dBc/Hz at a 10 kHz offset from the carrier. The chip size is 1. 2 mm × 0. 9 mm.
文摘A design and implementation for a 2.4GHz quadrature output frequency synthesizer intended for bluetooth in 0. 35μm CMOS technology are presented. A differentially controlled quadrature voltage-controlled oscillator (QVCO) is employed to generate quadrature (I/Q) signals. A second-order loop filter, with a unit gain transconductance amplifier having the performance of a third-order loop filter,is exploited for low cost. The measured spot phase noise is -106.15dBc/Hz@ 1MHz. Close-in phase noise is less than -70dBc/Hz. The synthesizer consumes 13.5mA under a 3.3V voltage supply. The core size is 1.3mm×0. 8mm.
文摘A low phase noise quadrature oscillator using the new injection locked technique is proposed. The incident signal is directly injected into the common-source connection of the sub-harmonic oscillator. In principle, the phase noise performance of the quadrature output is better than the sub-harmonic oscillator itself. The quadrature oscillator is implemented in a 0. 25μm CMOS process. Measurements show the proposed oscillator could achieve a phase noise of --130dBc/Hz at 1MHz offset from 1. 13GHz carrier while only drawing an 8.0mA current from the 2.5V power supply.
基金The National High Technology Research and Development Program of China (863 Program)(No. 2007AA01Z2a5)the National Natural Science Foundation of China (No. 60806027,61076073)Specialized Research Fund for the Doctoral Program of Higher Education (No.20090092120012)
文摘In order to make a 10 Gbit/s 2:1 half-rate multiplexer operate without external clocks, a 5 Gbit/s clock recovery (CR) circuit is needed to extract the desired clock from one input data. For the CR circuit, a 3-stage ring voltage-controlled oscillator (VCO) is employed to avoid an unreliable startup of a 2-stage VCO and a low oscillation frequency of a 4-stage VCO. A phase frequency detector (PFD) is used to expand the pull-in range to meet the wide tuning range of a VCO required by process-voltage-temperature (PVT) variation. SMIC 0. 18-μm CMOS technology is adopted and the core area is 170 μm ×270 μm. Measurements show that, under a 1.8 V supply voltage, it consumes only about 90 mW, and has an input sensitivity of less than 25 mV, an output single-ended swing of above 300 mV, a phase noise of - 114 dBc/Hz at 1 MHz offset and a pull-in range of 1 GHz.
文摘This paper introduces a 2.5GHz low phase-noise cross-coupled LC-VCO realized in 0.35μm SiGe BiCMOS technology. The conventional definition of a VCO operating regime is revised from a new perspective. Analysis shows the importance of inductance and bias current selection for oscillator phase noise optimization. Differences between CMOS and BJT VCO design strategy are then analyzed and the conclusions are summarized. In this implementation, bonding wires form the resonator to improve the phase noise performance. The VCO is then integrated with other components to form a PLL frequency synthesizer with a loop bandwidth of 30kHz. Measurement shows a phase noise of - 95dBc/Hz at 100kHz offset and - 116dBc/Hz at 1MHz offset from a 2.5GHz carrier. At a supply voltage of 3V, the VCO core consumes 8mA. To our knowledge,this is the first differential cross-coupled VCO in SiGe BiCMOS technology in China.
文摘A 4. 224GHz quadrature voltage-controlled oscillator (QVCO) applied in MB-OFDM UWB synthesizers is implemented in 0.18μm RF-CMOS technology. An improved structure of the QVCO is presented for better phase noise. A novel configuration of a MOS varactor is designed for good linearity of K as well as a new digital capacitor controlled array topology with lower parasitic capacitance and lower Ron. Measurement results show a phase noise of - 90.4dBc/Hz at 100kHz offset and - 116.7dBc/Hz at 1MHz offset from a carrier close to 4. 224GHz. The power dissipation is 10. 55mW from a 1.8V supply.