Blind identification-blind equalization for Finite Impulse Response (FIR) Multiple Input-Multiple Output (MIMO) channels can be reformulated as the problem of blind sources separation. It has been shown that blind ide...Blind identification-blind equalization for Finite Impulse Response (FIR) Multiple Input-Multiple Output (MIMO) channels can be reformulated as the problem of blind sources separation. It has been shown that blind identification via decorrelating sub-channels method could recover the input sources. The Blind Identification via Decorrelating Sub-channels(BIDS)algorithm first constructs a set of decorrelators, which decorrelate the output signals of subchannels, and then estimates the channel matrix using the transfer functions of the decorrelators and finally recovers the input signal using the estimated channel matrix. In this paper, a new approximation of the input source for FIR-MIMO channels based on the maximum likelihood source separation method is proposed. The proposed method outperforms BIDS in the presence of additive white Gaussian noise.展开更多
基金Supported by the National Natural Science Foundation of China (No.60172048)
文摘Blind identification-blind equalization for Finite Impulse Response (FIR) Multiple Input-Multiple Output (MIMO) channels can be reformulated as the problem of blind sources separation. It has been shown that blind identification via decorrelating sub-channels method could recover the input sources. The Blind Identification via Decorrelating Sub-channels(BIDS)algorithm first constructs a set of decorrelators, which decorrelate the output signals of subchannels, and then estimates the channel matrix using the transfer functions of the decorrelators and finally recovers the input signal using the estimated channel matrix. In this paper, a new approximation of the input source for FIR-MIMO channels based on the maximum likelihood source separation method is proposed. The proposed method outperforms BIDS in the presence of additive white Gaussian noise.