为有效抑制椒盐噪声对图像信息的影响,根据椒盐噪声随机破坏图像中像素值的显著特征,本文提出一种耦合噪声检测的自适应模糊正则化噪声去除模型。一方面,基于L_(1)范数建立数据保真项,实现对图像统计分布进行有效拟合。另一方面,通过对...为有效抑制椒盐噪声对图像信息的影响,根据椒盐噪声随机破坏图像中像素值的显著特征,本文提出一种耦合噪声检测的自适应模糊正则化噪声去除模型。一方面,基于L_(1)范数建立数据保真项,实现对图像统计分布进行有效拟合。另一方面,通过对图像中像素相似性的有效量化实现图像中噪声的检测,并将此耦合至正则项中,使得模型可依据像素点实际受噪声的污染对其施加惩罚程度,最终实现椒盐噪声的自适应模糊去除。本文采用交替方向乘子法(Alternating direction method of multipliers,ADMM)进行模型的数值结果实现,并运用峰值信噪比(Peak signal-to-noise ratio,PSNR)及结构相似性(Structural similarity,SSIM)对实验结果进行评定。实验结果表明,本文提出的模型在PSNR及SSIM方面得到显著提升,其中对于灰度图像的去噪实验PSNR最高可提高1.3dB,SSIM最高可提高0.2。展开更多
分析了非参数化谱估计方法,分析表明,它们所解决的优化问题都是加权最小二乘(weighted least square,WLS),不同在于如何估计广义噪声协方差矩阵来构建加权矩阵。基于统一框架,提出了一种能同时估计信号频谱和观测噪声的自适应迭代非参...分析了非参数化谱估计方法,分析表明,它们所解决的优化问题都是加权最小二乘(weighted least square,WLS),不同在于如何估计广义噪声协方差矩阵来构建加权矩阵。基于统一框架,提出了一种能同时估计信号频谱和观测噪声的自适应迭代非参数谱估计方法。该方法在每一次迭代时都利用上一次估计结果来逐步逼近真实的广义噪声协方差矩阵。分析和仿真表明,本文方法具有分辨率高,谱泄漏抑制好,并能增强信号协方差矩阵的可逆性和频谱范围选择的随意性等特点。展开更多
针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进...针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进一步矫正信号导向矢量;然后,利用Capon功率谱初步重构干扰加噪声协方差矩阵;接着,利用干扰子空间的正交性和多重信号分类(Multiple Signal Classification,MUSIC)功率谱进一步精确重构干扰加噪声协方差矩阵;最后,计算出最优权值矢量。仿真结果表明,所提算法在大角度失配和低快拍数条件下具有较好的稳健性。展开更多
文摘为有效抑制椒盐噪声对图像信息的影响,根据椒盐噪声随机破坏图像中像素值的显著特征,本文提出一种耦合噪声检测的自适应模糊正则化噪声去除模型。一方面,基于L_(1)范数建立数据保真项,实现对图像统计分布进行有效拟合。另一方面,通过对图像中像素相似性的有效量化实现图像中噪声的检测,并将此耦合至正则项中,使得模型可依据像素点实际受噪声的污染对其施加惩罚程度,最终实现椒盐噪声的自适应模糊去除。本文采用交替方向乘子法(Alternating direction method of multipliers,ADMM)进行模型的数值结果实现,并运用峰值信噪比(Peak signal-to-noise ratio,PSNR)及结构相似性(Structural similarity,SSIM)对实验结果进行评定。实验结果表明,本文提出的模型在PSNR及SSIM方面得到显著提升,其中对于灰度图像的去噪实验PSNR最高可提高1.3dB,SSIM最高可提高0.2。
文摘分析了非参数化谱估计方法,分析表明,它们所解决的优化问题都是加权最小二乘(weighted least square,WLS),不同在于如何估计广义噪声协方差矩阵来构建加权矩阵。基于统一框架,提出了一种能同时估计信号频谱和观测噪声的自适应迭代非参数谱估计方法。该方法在每一次迭代时都利用上一次估计结果来逐步逼近真实的广义噪声协方差矩阵。分析和仿真表明,本文方法具有分辨率高,谱泄漏抑制好,并能增强信号协方差矩阵的可逆性和频谱范围选择的随意性等特点。
文摘针对采样协方差矩阵中含有信号分量和信号导向矢量失配造成的自适应波束形成器性能下降的问题,提出了一种导向矢量矫正和双层干扰加噪声协方差矩阵重构的稳健波束形成算法。首先,通过子空间投影方法去除接收数据中的干扰和噪声分量来进一步矫正信号导向矢量;然后,利用Capon功率谱初步重构干扰加噪声协方差矩阵;接着,利用干扰子空间的正交性和多重信号分类(Multiple Signal Classification,MUSIC)功率谱进一步精确重构干扰加噪声协方差矩阵;最后,计算出最优权值矢量。仿真结果表明,所提算法在大角度失配和低快拍数条件下具有较好的稳健性。