针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提...针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。展开更多
为解决船舶轨迹聚类算法效率不高,检测精度低,丢失轨迹局部特征等问题,将具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法由传统的点聚类推广为线聚类,提出一种可以直接对完整...为解决船舶轨迹聚类算法效率不高,检测精度低,丢失轨迹局部特征等问题,将具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法由传统的点聚类推广为线聚类,提出一种可以直接对完整船舶轨迹进行聚类的具有噪声的基于密度的轨迹聚类(density-based trajectory clustering of applications with noise,DBTCAN)算法。该算法采用Hausdorff距离作为船舶轨迹之间的相似度度量,可以对不同长度的船舶轨迹进行聚类。针对DBTCAN算法需要人工确定输入参数的问题,提出一种参数自适应确定方法。选取渤海海域的船舶自动识别系统(automatic identification system,AIS)数据进行实验,结果表明,该算法能够在大量复杂的船舶轨迹中找到相似的轨迹并对其进行聚类,聚类结果与实际交通流情况一致。本文的研究成果可以为相关部门进行航线规划和海上交通监管提供依据。展开更多
文摘针对机载激光雷达建筑物点云提取过程中自动化提取困难,以及提取后的建筑物单体化过程烦琐等问题,提出一种基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的机载雷达建筑物点云提取与单体化的方法。该方法对预处理后的点云数据基于DBSCAN算法进行去噪与初步的提取,通过三维密度聚类,将建筑物的点云进行提取与自动单体化。根据建筑物点云密度的特点,进行二维的密度聚类,结合数字正射影像图(digital orthophoto map,DOM)进行点云分割。最后将处理后的点云数据进行优化处理,并将建筑物单体化簇类进行提取,得到单体化建筑物点云。结果表明:提取的建筑物点云数量正确率为97.36%,轮廓边长的中误差为0.077,可以有效地提取出建筑物点云并将其单体化。
文摘为解决船舶轨迹聚类算法效率不高,检测精度低,丢失轨迹局部特征等问题,将具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法由传统的点聚类推广为线聚类,提出一种可以直接对完整船舶轨迹进行聚类的具有噪声的基于密度的轨迹聚类(density-based trajectory clustering of applications with noise,DBTCAN)算法。该算法采用Hausdorff距离作为船舶轨迹之间的相似度度量,可以对不同长度的船舶轨迹进行聚类。针对DBTCAN算法需要人工确定输入参数的问题,提出一种参数自适应确定方法。选取渤海海域的船舶自动识别系统(automatic identification system,AIS)数据进行实验,结果表明,该算法能够在大量复杂的船舶轨迹中找到相似的轨迹并对其进行聚类,聚类结果与实际交通流情况一致。本文的研究成果可以为相关部门进行航线规划和海上交通监管提供依据。