In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the opti...In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the optimal associative mapping proposed by Kohonen. Like LBAM and NBAM proposed by one of the present authors,the present BAM ensures the guaranteed recall of all stored patterns,and possesses far higher capacity compared with other existing BAMs,and like NBAM, has the strong ability to suppress the noise occurring in the output patterns and therefore reduce largely the spurious patterns. The derivation of DBAM is given and the stability of DBAM is proved. We also derive a learning algorithm for DBAM,which has iterative form and make the network learn new patterns easily. Compared with NBAM the present BAM can be easily implemented by software.展开更多
The noise data in vertical component records of 85 seismic stations in Fujian Province during 2012 is used as the research object in this paper. The noise data is divided into fiveminute segments to calculate the powe...The noise data in vertical component records of 85 seismic stations in Fujian Province during 2012 is used as the research object in this paper. The noise data is divided into fiveminute segments to calculate the power spectra. The high reference line and low reference line of station are then identified by drawing a probability density function graph( PDF)using the power spectral probability density function. Moreover, according to the anomalies of PDF graphs in 85 seismic stations,the abnormal noise is divided into four categories: dropped packet, low noise, high noise, and median noise anomalies.Afterwards,four selection methods are found by the high or low noise reference line of the stations,and the system of real-time monitoring of seismic noise is formed by combining the four selection methods. Noise records of 85 seismic stations in Fujian Province in July2013 are selected for verification,and the results show that the anomalous noise-recognition system could reach a 90% success rate at most stations and the effect of selection are very good. Therefore,it could be applied to the seismic noise real-time monitoring in stations.展开更多
文摘In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the optimal associative mapping proposed by Kohonen. Like LBAM and NBAM proposed by one of the present authors,the present BAM ensures the guaranteed recall of all stored patterns,and possesses far higher capacity compared with other existing BAMs,and like NBAM, has the strong ability to suppress the noise occurring in the output patterns and therefore reduce largely the spurious patterns. The derivation of DBAM is given and the stability of DBAM is proved. We also derive a learning algorithm for DBAM,which has iterative form and make the network learn new patterns easily. Compared with NBAM the present BAM can be easily implemented by software.
基金sponsored by the National Key Technology R&D Program of China(2009BAK55B00)the Earthquake Industry Research Project(201508012)
文摘The noise data in vertical component records of 85 seismic stations in Fujian Province during 2012 is used as the research object in this paper. The noise data is divided into fiveminute segments to calculate the power spectra. The high reference line and low reference line of station are then identified by drawing a probability density function graph( PDF)using the power spectral probability density function. Moreover, according to the anomalies of PDF graphs in 85 seismic stations,the abnormal noise is divided into four categories: dropped packet, low noise, high noise, and median noise anomalies.Afterwards,four selection methods are found by the high or low noise reference line of the stations,and the system of real-time monitoring of seismic noise is formed by combining the four selection methods. Noise records of 85 seismic stations in Fujian Province in July2013 are selected for verification,and the results show that the anomalous noise-recognition system could reach a 90% success rate at most stations and the effect of selection are very good. Therefore,it could be applied to the seismic noise real-time monitoring in stations.