By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission...By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission can be enhanced when a certain amount of noise is presented, i.e., aperiodic stochastic resonance (ASR). Then, the influence of signal amplitude and the ST threshold on ASR is examined, the applicability of the ST in reducing the noise level of random signal transmission and improving the quality of output signal via ASR effect is illustrated. This research is of great interest in the field of digital communications.展开更多
An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bi...An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bit error rate induced by eavesdropper is 4.17% in C-protocol and 6.25% in Y-protocoL In this paper, another improvement on C-protocol is given. The quantum bit error rate of the eavesdropping will increase to 8.75%, which is 1.1 times larger than that in C-protocol and 0.4 times larger than that in Y-protocol.展开更多
Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some are...Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.展开更多
The performance of an OFDM/OQAM system under phase noise is analyzed. The analysis helps to direct the design of low cost tuners through specifying the required phase noise characteristics. Discrete time formulation o...The performance of an OFDM/OQAM system under phase noise is analyzed. The analysis helps to direct the design of low cost tuners through specifying the required phase noise characteristics. Discrete time formulation of OFDM/OQAM is first derived with the square root raised cosine (SRRC) filter as the pulse-shaping filter. Then the effect of multiplicative phase noise is equivalently represented as additive white Gaussian noise (AWGN), the variance of which is given analytically. We can observe that the same result as OFDM/QAM system is derived. Lastly, all the analytical results are verified by the bit error rate (BER) degradation through Monte Carlo simulation.展开更多
Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air tr...Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation.展开更多
The performance of UWB (Ultrawide Bandwidth) radio systems under class A impulsive noise environment is studied in this paper. First, while employing the Middleton’s class A model as a model of impulsive noise, the s...The performance of UWB (Ultrawide Bandwidth) radio systems under class A impulsive noise environment is studied in this paper. First, while employing the Middleton’s class A model as a model of impulsive noise, the statistical characteristics of in-phase and quadrature components of impulsive noise is investigated. It is proven that, unlike Gaussian noise, they are dependent especially due to the fact that impulsive indices are small. Next, using this above dependence, a novel UWB radio receiver designed for impulsive noise is proposed and the exact expression for the average BER (Bit Error Rate) of this receiver as a function of SNR (Signal to Noise Power Ratio) and threshold value is derived. Then, the optimum threshold value is discussed and the performance of UWB radio systems with the proposed receiver designed for impulsive noise and with the conventional receiver designed for Gaussian noise under impulsive noise environment is estimated. Numerical results are compared and show that the influence of impulsiveness index and threshold value on the performance of UWB radio systems is quite large and that the performance achieved by the proposed UWB radio receiver is much superior to that of the conventional UWB radio receiver under class A impulsive noise environment.展开更多
For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correct...For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correction capability. This letter presents a new FEC scheme based on multiple-symbol interleaved Reed-Solomon codes and an associated two-pass decoding algorithm. It is shown that the proposed multi-symbol interleaved Reed-Solomon scheme can achieve nearly twice as much as the burst error correction capability of conventional single-symbol interleaved Reed-Solomon codes with the same code length and code rate.展开更多
文摘By the use of cross-correlation measures, the response of a symmetric Schmitt trigger (ST) driven by a random binary signal and white Gaussian noise is investigated. The results show that the information transmission can be enhanced when a certain amount of noise is presented, i.e., aperiodic stochastic resonance (ASR). Then, the influence of signal amplitude and the ST threshold on ASR is examined, the applicability of the ST in reducing the noise level of random signal transmission and improving the quality of output signal via ASR effect is illustrated. This research is of great interest in the field of digital communications.
基金supported by National Natural Science Foundation of China under Grant No.10704011the Research Programs of the Educational Office of Liaoning Province of China under Grant No.2008006
文摘An improvement (Y-protocol) [Commun. Theor. Phys. 49 (2008) 103] on the quantum secure direct communication with W state (C-protocol) [Chin. Phys. Lett. 23 (2006) 290] is proposed by Yuan et al. The quantum bit error rate induced by eavesdropper is 4.17% in C-protocol and 6.25% in Y-protocoL In this paper, another improvement on C-protocol is given. The quantum bit error rate of the eavesdropping will increase to 8.75%, which is 1.1 times larger than that in C-protocol and 0.4 times larger than that in Y-protocol.
基金supported by a grant from the National High Technology Research and Development Program of China (863 Program) (No.2008AA04A107)supported by a grant from the Major Programs of Guangdong-Hongkong in the Key Domain (No.2009498B21)
文摘Conventional quantization index modulation (QIM) watermarking uses the fixed quantization step size for the host signal.This scheme is not robust against geometric distortions and may lead to poor fidelity in some areas of content.Thus,we proposed a quantization-based image watermarking in the dual tree complex wavelet domain.We took advantages of the dual tree complex wavelets (perfect reconstruction,approximate shift invariance,and directional selectivity).For the case of watermark detecting,the probability of false alarm and probability of false negative were exploited and verified by simulation.Experimental results demonstrate that the proposed method is robust against JPEG compression,additive white Gaussian noise (AWGN),and some kinds of geometric attacks such as scaling,rotation,etc.
文摘The performance of an OFDM/OQAM system under phase noise is analyzed. The analysis helps to direct the design of low cost tuners through specifying the required phase noise characteristics. Discrete time formulation of OFDM/OQAM is first derived with the square root raised cosine (SRRC) filter as the pulse-shaping filter. Then the effect of multiplicative phase noise is equivalently represented as additive white Gaussian noise (AWGN), the variance of which is given analytically. We can observe that the same result as OFDM/QAM system is derived. Lastly, all the analytical results are verified by the bit error rate (BER) degradation through Monte Carlo simulation.
基金This work was supported by the Na⁃tional Natural Science Foundation of China(No.61903187)Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20190732)。
文摘Air traffic complexity is a critical indicator for air traffic operation,and plays an important role in air traffic management(ATM),such as airspace reconfiguration,air traffic flow management and allocation of air traffic controllers(ATCos).Recently,many machine learning techniques have been used to evaluate air traffic complexity by constructing a mapping from complexity related factors to air traffic complexity labels.However,the low quality of complexity labels,which is named as label noise,has often been neglected and caused unsatisfactory performance in air traffic complexity evaluation.This paper aims at label noise in air traffic complexity samples,and proposes a confident learning and XGBoost-based approach to evaluate air traffic complexity under label noise.The confident learning process is applied to filter out noisy samples with various label probability distributions,and XGBoost is used to train a robust and high-performance air traffic complexity evaluation model on the different label noise filtered ratio datasets.Experiments are carried out on a real dataset from the Guangzhou airspace sector in China,and the results prove that the appropriate label noise removal strategy and XGBoost algorithm can effectively mitigate the label noise problem and achieve better performance in air traffic complexity evaluation.
文摘The performance of UWB (Ultrawide Bandwidth) radio systems under class A impulsive noise environment is studied in this paper. First, while employing the Middleton’s class A model as a model of impulsive noise, the statistical characteristics of in-phase and quadrature components of impulsive noise is investigated. It is proven that, unlike Gaussian noise, they are dependent especially due to the fact that impulsive indices are small. Next, using this above dependence, a novel UWB radio receiver designed for impulsive noise is proposed and the exact expression for the average BER (Bit Error Rate) of this receiver as a function of SNR (Signal to Noise Power Ratio) and threshold value is derived. Then, the optimum threshold value is discussed and the performance of UWB radio systems with the proposed receiver designed for impulsive noise and with the conventional receiver designed for Gaussian noise under impulsive noise environment is estimated. Numerical results are compared and show that the influence of impulsiveness index and threshold value on the performance of UWB radio systems is quite large and that the performance achieved by the proposed UWB radio receiver is much superior to that of the conventional UWB radio receiver under class A impulsive noise environment.
文摘For communication systems with heavy burst noise, an optimal Forward Error Correction(FEC) scheme is expected to have a large burst error correction capability while simultaneously owning moderate random error correction capability. This letter presents a new FEC scheme based on multiple-symbol interleaved Reed-Solomon codes and an associated two-pass decoding algorithm. It is shown that the proposed multi-symbol interleaved Reed-Solomon scheme can achieve nearly twice as much as the burst error correction capability of conventional single-symbol interleaved Reed-Solomon codes with the same code length and code rate.