A new chromogenic reagent, 1 -(5 - nitro- 3 - benzopsendothiazde)- 3 -(4 - phenylazophenyl) - triazene (NBPTPAPT) has been synthesized and used as a sensitive reagent for the spectrophotometric determination of ...A new chromogenic reagent, 1 -(5 - nitro- 3 - benzopsendothiazde)- 3 -(4 - phenylazophenyl) - triazene (NBPTPAPT) has been synthesized and used as a sensitive reagent for the spectrophotometric determination of cobalt. In the presence of Tween - 80, the reagent with Co ( Ⅱ ) forms a yellow complex (1 : 2) in the buffer solution of Na2B4O7 - NaOH at pH 10.54. The apparent molar absorptivity is 1.220× 10^5 L· mol^- 1· cm^- 1 with the linear range of 0 - 240μg/ L for Co (Ⅱ) by dual-wavelength spectrophotometry. Trace cobalt in vitamin B12 and tea samples has been determined with satisfactory results.展开更多
By the reaction of poly(bromoacetyl styrene) (EBPS) with thiaurea (TU), a kind of novel chelating resin with heterocyaclic ring of sulfur and nitrogen, poly[4-(2-amino)thiazoleyl-4- vinylbenzene], was synthesized. Its...By the reaction of poly(bromoacetyl styrene) (EBPS) with thiaurea (TU), a kind of novel chelating resin with heterocyaclic ring of sulfur and nitrogen, poly[4-(2-amino)thiazoleyl-4- vinylbenzene], was synthesized. Its structure was characterized by FTIR and elemental analysis. The factors which have influence on the reaction such as reaction time, solvents, and molar ratio of reactants were investigated.展开更多
The alkylation of sulfur compounds with olefine is considered to be an attractive way to attain high level of sulfur removal by raising the boiling point of sulfur-containing compounds to ease their separation from li...The alkylation of sulfur compounds with olefine is considered to be an attractive way to attain high level of sulfur removal by raising the boiling point of sulfur-containing compounds to ease their separation from lighl fractions by distillation. A series of superparamagnetic supported catalysts, used for alkylation of thiophene with 1-octene, were prepared by loading H3PW12040 (HPW) onto commercially available nanoparticles γ-Fe2O3 through incipient wet impregnation method. The catalysts were characterized by X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), thermo gravimetric analysis (TG), N2-adsorption and vibrating sample magnetometer (VSM). The physicochemical characterization reveals that 7-Fe203 could be accommodated to immobilize and disperse HPW. Moreover, possessing high magnetization of 26.1 A.mZ.kg-1 and with mesoporous structure with specific surface area of 35.9 m2·g^-1, the 40% (by mass) HPW loading catalyst is considered the proper catalyst for olefinic alkylation of thiophenic sulfur (OATS) and can be separated in an external magnetic field. The catalytic activity was investigated in the alkylation reaction of thiophene with 1-octene, and the conversion of thiophene is up to 46% at 160 ℃ in 3 h. The 40% (by mass) H3PW12O40/γ-Fe2O3 catalyst can be reused 6 times without too much loss of activit and keeps its property of superparamagnetism.展开更多
Polymer solar cells (PSCs) made by poly(3-hexylthiophene) (P3HT) with multi-adducts fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), PC61BM-bisadduct (bisPC61BM) and PC61BM-trisadduct (trisPC61BM), wer...Polymer solar cells (PSCs) made by poly(3-hexylthiophene) (P3HT) with multi-adducts fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), PC61BM-bisadduct (bisPC61BM) and PC61BM-trisadduct (trisPC61BM), were reported. Electrochemistry studies indicated that PC61BM, bisPC61BM and trisPC61BM had step-up distributional lowest unoccupied molecular orbital (LUMO) energy. PSCs made by P3HT with above PC61BMs show a trend of enlarged open-circuit voltages, which is in good agreement with the energy difference between the LUMO of PC61BMs and the HOMO of P3HT. On the contrary, reduced short-circuit currents (Jsc) were observed. The investigation of photo responsibility, dynamics analysis based on photo-induced absorption of composite films, P3HT:PC61BMs and n-channel thin film field-effect transistors of PC61BMs suggested that the short polaron lifetimes and low carrier mobilities were response for reduced Jsc. All these results demonstrated that it was important to develop an electron acceptor which has both high carrier mobility, and good compatibility with the electron donor conjugated polymer for approaching high performance PSCs.展开更多
An A-D-A-type small molecule, DCF-2HT, was synthesized using fluorene as the central block and 2- (2,3-dihydro-3-oxo- 1H-inden- 1-ylidene)propanedinitrile as the end groups, with one hexyl-substituted thiophene as a...An A-D-A-type small molecule, DCF-2HT, was synthesized using fluorene as the central block and 2- (2,3-dihydro-3-oxo- 1H-inden- 1-ylidene)propanedinitrile as the end groups, with one hexyl-substituted thiophene as a n bridge, for use as an acceptor material in organic solar cells. Devices based on DCF-2HT and the polymer donors PBDB-T or PTB7-Th were fabricated and optimized. Power conversion efficiencies of 5.71% and 4.83% were obtained for PBDB-T: DCF-2HT- and PTB7-Th: DCF-2HT-based devices, respectively.展开更多
Sparse ZnO nanorod arrays(NRAs)are fabricated on transparent conducting oxide coated glass substrates by using a modified liquid phase epitaxial growth method.By adjusting the polymer concentrations and the spin-coati...Sparse ZnO nanorod arrays(NRAs)are fabricated on transparent conducting oxide coated glass substrates by using a modified liquid phase epitaxial growth method.By adjusting the polymer concentrations and the spin-coating parameters,full infiltration of poly(3-hexylthiophene)(P3HT)into the as-prepared ZnO NRAs is achieved at 130°C in vacuum.A third component is incorporated into the P3HT/ZnO NRAs ordered bulk heterojunctions(BHJs)either through ZnO surface modification with N719dye or CdS shell layer or by inclusion of a fullerene derivative into the P3HT matrix.Experimental results indicate that performances of the hybrid solar cells are improved greatly with the incorporation of a third component.However,the working principles of these third components differ from one another,according to morphology,structure,optical property,charge transfer and interfacial properties of the composite structures.An ideal device architecture for hybrid solar cells based on P3HT/ZnO NRAs ordered BHJs is proposed,which can be used as a guidance to further increase the power conversion efficiency of such solar cells.展开更多
Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate th...Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells(OSCs). The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films. The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71 BM as the acceptor, the power conversion efficiency(PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%, respectively. However, by blending with IDIC, the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs, and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and9.06%, respectively. These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.展开更多
A new benzodithiophene (BDT)-alt-fluorobenzotriazole (FBTA) D-A copolymer J40 was designed and synthesized by introducing 2-octyldodecyloxy side chains on its BDT units, for expanding the family of the BDT- alt-FB...A new benzodithiophene (BDT)-alt-fluorobenzotriazole (FBTA) D-A copolymer J40 was designed and synthesized by introducing 2-octyldodecyloxy side chains on its BDT units, for expanding the family of the BDT- alt-FBTA-based copolymers and investigating the side chain effect on the photovoltaic performance of the polymer in non-fullerene polymer solar cells (PSCs). J40 exhibits complementary absorption spectra and matched electronic energy levels with the n-type organic semiconductor (n-OS) (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s- indaceno[1,2-b:5,6-b']dithiophene) (ITIC) acceptor, and was used as polymer donor in the non-fullerene PSCs with ITIC as acceptor. The power conversion efficiency (PCE) of the PSCs based on J40:ITIC (1:1, w/w) with thermal annealing at 120 ~C for l0 min reached 6.48% with a higher open-circuit voltage (Voc) of 0.89 V. The high Voc of the PSCs is benefitted from the lower-lying highest occupied molecular orbital (HOMO) energy level of J40. Although the photovoltaic performance of the polymer J40 with alkoxy side chain is lower than that of J60 and J61 with alkylthio-thienyl conjugated side chains, the PCE of 6.48% for the J40-based device is still a relatively higher photovoltaic efficiency in the non-fullerene PSCs reported so far. The results indicate that the family of the BDT-alt-FBTA-based D-A copolymers are high performance polymer donor materials for non-fullerene PSCs and the side chain engineering plays an important role in the design of high performance polymer donors in the non-fullerene PSCs.展开更多
Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthes...Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the tS-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.展开更多
基金Natural Science Foundation of Fujian Province (No.D0410027)
文摘A new chromogenic reagent, 1 -(5 - nitro- 3 - benzopsendothiazde)- 3 -(4 - phenylazophenyl) - triazene (NBPTPAPT) has been synthesized and used as a sensitive reagent for the spectrophotometric determination of cobalt. In the presence of Tween - 80, the reagent with Co ( Ⅱ ) forms a yellow complex (1 : 2) in the buffer solution of Na2B4O7 - NaOH at pH 10.54. The apparent molar absorptivity is 1.220× 10^5 L· mol^- 1· cm^- 1 with the linear range of 0 - 240μg/ L for Co (Ⅱ) by dual-wavelength spectrophotometry. Trace cobalt in vitamin B12 and tea samples has been determined with satisfactory results.
基金National Natural Science Foundation of China (No.29906008) and Natural Science Foundation of Shandong Province (No.Q99B15)
文摘By the reaction of poly(bromoacetyl styrene) (EBPS) with thiaurea (TU), a kind of novel chelating resin with heterocyaclic ring of sulfur and nitrogen, poly[4-(2-amino)thiazoleyl-4- vinylbenzene], was synthesized. Its structure was characterized by FTIR and elemental analysis. The factors which have influence on the reaction such as reaction time, solvents, and molar ratio of reactants were investigated.
基金Supported by the National Natural Science Foundation of China(21076047)
文摘The alkylation of sulfur compounds with olefine is considered to be an attractive way to attain high level of sulfur removal by raising the boiling point of sulfur-containing compounds to ease their separation from lighl fractions by distillation. A series of superparamagnetic supported catalysts, used for alkylation of thiophene with 1-octene, were prepared by loading H3PW12040 (HPW) onto commercially available nanoparticles γ-Fe2O3 through incipient wet impregnation method. The catalysts were characterized by X-ray diffraction (XRD), Fourier transform infra-red (FT-IR), thermo gravimetric analysis (TG), N2-adsorption and vibrating sample magnetometer (VSM). The physicochemical characterization reveals that 7-Fe203 could be accommodated to immobilize and disperse HPW. Moreover, possessing high magnetization of 26.1 A.mZ.kg-1 and with mesoporous structure with specific surface area of 35.9 m2·g^-1, the 40% (by mass) HPW loading catalyst is considered the proper catalyst for olefinic alkylation of thiophenic sulfur (OATS) and can be separated in an external magnetic field. The catalytic activity was investigated in the alkylation reaction of thiophene with 1-octene, and the conversion of thiophene is up to 46% at 160 ℃ in 3 h. The 40% (by mass) H3PW12O40/γ-Fe2O3 catalyst can be reused 6 times without too much loss of activit and keeps its property of superparamagnetism.
基金Fund for Overseas Chinese Scholarsthe National Natural Science Foundation of China (50828301)
文摘Polymer solar cells (PSCs) made by poly(3-hexylthiophene) (P3HT) with multi-adducts fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), PC61BM-bisadduct (bisPC61BM) and PC61BM-trisadduct (trisPC61BM), were reported. Electrochemistry studies indicated that PC61BM, bisPC61BM and trisPC61BM had step-up distributional lowest unoccupied molecular orbital (LUMO) energy. PSCs made by P3HT with above PC61BMs show a trend of enlarged open-circuit voltages, which is in good agreement with the energy difference between the LUMO of PC61BMs and the HOMO of P3HT. On the contrary, reduced short-circuit currents (Jsc) were observed. The investigation of photo responsibility, dynamics analysis based on photo-induced absorption of composite films, P3HT:PC61BMs and n-channel thin film field-effect transistors of PC61BMs suggested that the short polaron lifetimes and low carrier mobilities were response for reduced Jsc. All these results demonstrated that it was important to develop an electron acceptor which has both high carrier mobility, and good compatibility with the electron donor conjugated polymer for approaching high performance PSCs.
基金supported by the Ministry of Science and Technology(2014CB643502 and 2016YFA0200200)the National Natural Science Foundation of China(21404060 and 91433101)
文摘An A-D-A-type small molecule, DCF-2HT, was synthesized using fluorene as the central block and 2- (2,3-dihydro-3-oxo- 1H-inden- 1-ylidene)propanedinitrile as the end groups, with one hexyl-substituted thiophene as a n bridge, for use as an acceptor material in organic solar cells. Devices based on DCF-2HT and the polymer donors PBDB-T or PTB7-Th were fabricated and optimized. Power conversion efficiencies of 5.71% and 4.83% were obtained for PBDB-T: DCF-2HT- and PTB7-Th: DCF-2HT-based devices, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.90923012 and 61078058)the Science and Technology Developing Project of Shaanxi Province(Grant No.2012KW-11)the Ministry of Science and Technology of China through 863-project(Grant No.2009AA03Z218)
文摘Sparse ZnO nanorod arrays(NRAs)are fabricated on transparent conducting oxide coated glass substrates by using a modified liquid phase epitaxial growth method.By adjusting the polymer concentrations and the spin-coating parameters,full infiltration of poly(3-hexylthiophene)(P3HT)into the as-prepared ZnO NRAs is achieved at 130°C in vacuum.A third component is incorporated into the P3HT/ZnO NRAs ordered bulk heterojunctions(BHJs)either through ZnO surface modification with N719dye or CdS shell layer or by inclusion of a fullerene derivative into the P3HT matrix.Experimental results indicate that performances of the hybrid solar cells are improved greatly with the incorporation of a third component.However,the working principles of these third components differ from one another,according to morphology,structure,optical property,charge transfer and interfacial properties of the composite structures.An ideal device architecture for hybrid solar cells based on P3HT/ZnO NRAs ordered BHJs is proposed,which can be used as a guidance to further increase the power conversion efficiency of such solar cells.
基金supported by the Ministry of Science and Technology of China (2014CB643501)the National Natural Science Foundation of China (21325419, 51373181, 91333204, 91633301)
文摘Two benzo[1,2-b:4,5-b¢]dithiophene(BDT)-based small molecule(SM) donor materials with identical conjugated backbones but different substitution groups, named as DRTB-O and DRTB-T, were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells(OSCs). The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films. The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71 BM as the acceptor, the power conversion efficiency(PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%, respectively. However, by blending with IDIC, the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs, and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and9.06%, respectively. These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.
基金supported by the National Basic Research Program of China(2014CB643501)the National Natural Science Foundation of China(91433117,91333204,21374124)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12030200)
文摘A new benzodithiophene (BDT)-alt-fluorobenzotriazole (FBTA) D-A copolymer J40 was designed and synthesized by introducing 2-octyldodecyloxy side chains on its BDT units, for expanding the family of the BDT- alt-FBTA-based copolymers and investigating the side chain effect on the photovoltaic performance of the polymer in non-fullerene polymer solar cells (PSCs). J40 exhibits complementary absorption spectra and matched electronic energy levels with the n-type organic semiconductor (n-OS) (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s- indaceno[1,2-b:5,6-b']dithiophene) (ITIC) acceptor, and was used as polymer donor in the non-fullerene PSCs with ITIC as acceptor. The power conversion efficiency (PCE) of the PSCs based on J40:ITIC (1:1, w/w) with thermal annealing at 120 ~C for l0 min reached 6.48% with a higher open-circuit voltage (Voc) of 0.89 V. The high Voc of the PSCs is benefitted from the lower-lying highest occupied molecular orbital (HOMO) energy level of J40. Although the photovoltaic performance of the polymer J40 with alkoxy side chain is lower than that of J60 and J61 with alkylthio-thienyl conjugated side chains, the PCE of 6.48% for the J40-based device is still a relatively higher photovoltaic efficiency in the non-fullerene PSCs reported so far. The results indicate that the family of the BDT-alt-FBTA-based D-A copolymers are high performance polymer donor materials for non-fullerene PSCs and the side chain engineering plays an important role in the design of high performance polymer donors in the non-fullerene PSCs.
基金supported by the National Key Project of Transgenic Variety Development of China(Nos.2011ZX08009-004 and 2013ZX08009-004)Shanghai Key Laboratory of Bio-Energy Cropsthe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the tS-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.