We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evoluti...We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evolutionequations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to showthe main reduction procedure.These reductions cannot be derived within the framework of the standard Lie approach,which hints that the technique presented here is something essential for the dimensional reduction of evolu tion equations.展开更多
Sichuan rural endowment problem has become the problem epitome of aging society form in China in the future, and the establishment and improvement of Sichuan rural rational endowment pattern have important reference s...Sichuan rural endowment problem has become the problem epitome of aging society form in China in the future, and the establishment and improvement of Sichuan rural rational endowment pattern have important reference significance. This paper takes an analysis and discussion of Sichuan rural endowment pattern construction from the three aspects of Sichuan rural endowment pattern status and demand, Sichuan rural endowment pattern construction and rural endowment mode implementation guarantee measures.展开更多
This paper gives a theoretical analysis for the algorithms to compute functional decomposition for multivariate polynomials based on differentiation and homogenization which were proposed by Ye, Dai, and Lam (1999) ...This paper gives a theoretical analysis for the algorithms to compute functional decomposition for multivariate polynomials based on differentiation and homogenization which were proposed by Ye, Dai, and Lam (1999) and were developed by Faugere, Perret (2006, 2008, 2009). The authors show that a degree proper functional decomposition for a set of randomly decomposable quartic homoge- nous polynomials can be computed using the algorithm with high probability. This solves a conjecture proposed by Ye, Dal, and Lam (1999). The authors also propose a conjecture which asserts that the decomposition for a set of polynomials can be computed from that of its homogenization and show that the conjecture is valid with high probability for quartic polynomials. Finally, the authors prove that the right decomposition factors for a set of polynomials can be computed from its right decomposition factor space.展开更多
基金National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We exploit higher-order conditional symmetry to reduce initial-value problems for evolution equations toCauchy problems for systems of ordinary differential equations (ODEs).We classify a class of fourth-order evolutionequations which admit certain higher-order generalized conditional symmetries (GCSs) and give some examples to showthe main reduction procedure.These reductions cannot be derived within the framework of the standard Lie approach,which hints that the technique presented here is something essential for the dimensional reduction of evolu tion equations.
文摘Sichuan rural endowment problem has become the problem epitome of aging society form in China in the future, and the establishment and improvement of Sichuan rural rational endowment pattern have important reference significance. This paper takes an analysis and discussion of Sichuan rural endowment pattern construction from the three aspects of Sichuan rural endowment pattern status and demand, Sichuan rural endowment pattern construction and rural endowment mode implementation guarantee measures.
基金partially supported by a National Key Basic Research Project of China under Grant No. 2011CB302400by a Grant from NSFC with Nos 60821002 and 10901156
文摘This paper gives a theoretical analysis for the algorithms to compute functional decomposition for multivariate polynomials based on differentiation and homogenization which were proposed by Ye, Dai, and Lam (1999) and were developed by Faugere, Perret (2006, 2008, 2009). The authors show that a degree proper functional decomposition for a set of randomly decomposable quartic homoge- nous polynomials can be computed using the algorithm with high probability. This solves a conjecture proposed by Ye, Dal, and Lam (1999). The authors also propose a conjecture which asserts that the decomposition for a set of polynomials can be computed from that of its homogenization and show that the conjecture is valid with high probability for quartic polynomials. Finally, the authors prove that the right decomposition factors for a set of polynomials can be computed from its right decomposition factor space.