Making use of the method of few-body physics, the energy spectrum of a four-electron system consisting in a vertically coupled double-layer quantum dot as a function of the strength ofa magnetic field is investigated....Making use of the method of few-body physics, the energy spectrum of a four-electron system consisting in a vertically coupled double-layer quantum dot as a function of the strength ofa magnetic field is investigated. Discontinuous ground-state transitions induced by an external magnetic field are shown. We find that, in the strong coupling case, the ground-state transitions depend not only on the external magnetic field B but also on the distance d between double-layer quantum dots. However, in the case of weak coupling, the ground-state transitions occur in the new sequence of the values of the magic angular momentum. Hence, the interlayer separation d and electron-electron interaction strongly affect the ground state of the coupled quantum dots.展开更多
A measuring-basis encrypted quantum key distribution scheme is proposed by using twelve nonorthogohal states in a four-state system and the measuring-basis encryption technique. In this scheme, two bits of classical i...A measuring-basis encrypted quantum key distribution scheme is proposed by using twelve nonorthogohal states in a four-state system and the measuring-basis encryption technique. In this scheme, two bits of classical information can be encoded on one four-state particle and the transmitted particles can be fully used.展开更多
We propose a scheme for realization a quantum Controlled-NOT gate operation using two four-level atoms through a selective atom cavity interaction in cavity quantum electrodynamics system. In our protocol, the quantum...We propose a scheme for realization a quantum Controlled-NOT gate operation using two four-level atoms through a selective atom cavity interaction in cavity quantum electrodynamics system. In our protocol, the quantum information is encoded on the stable ground states of the two atoms. During the interaction between atoms and single-mode vacuum cavity-field, the atomic spontaneous emission is negligible as the large atom-cavity detuning effectively suppresses the spontaneous decay of the atoms. The influences of the dissipation and the deviation of interaction time on fidelity and corresponding success probability of the quantum Controlled-NOT gate and the experimental feasibility of our proposal are also discussed.展开更多
We investigate the entanglement transfer in a four-qubit system and calculate the concurrence between any two qubits in different initial states. We show that both the pure entangled state and mixed entangled state ca...We investigate the entanglement transfer in a four-qubit system and calculate the concurrence between any two qubits in different initial states. We show that both the pure entangled state and mixed entangled state can be transferred. For some special coupling constants and some evolution time, entanglement can be completely transferred from one pair particles to another.展开更多
We theoretically investigate the features of two-photon absorption in a coherently driven four-level atomic system with closed-loop configuration. It is found that two-photon absorption can be completely suppressed ju...We theoretically investigate the features of two-photon absorption in a coherently driven four-level atomic system with closed-loop configuration. It is found that two-photon absorption can be completely suppressed just by properly adjusting the relative phase of four coherent low-intensity driving fields and the atomic system becomes trans- parent against two-photon absorption. From a physical point of view, we explicitly explain these results in terms of quantum interference induced by two different two-photon excitation channels.展开更多
Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ...Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ofthese two types of schemes by considering that they can be classified into nine possible level styles as the second-ordersub-schemes using laser fields.Further we point out the complexity of their more than one hundred realistic configurationsas the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments.Throughoutthis paper we review which configurations have been studied in some research aspects and which ones not,accordingto our knowledge,in order to be propitious to next steps of theoretical and experimental investigations,especially forapplications in the fields of quantum optics,quantum information science,laser spectroscopy,and so on.展开更多
Energy is introduced as an entanglement witness to describe the entanglement property of a quantum system. The thermal equilibrium system is guaranteed to be entangled when system is cooled down below the entanglement...Energy is introduced as an entanglement witness to describe the entanglement property of a quantum system. The thermal equilibrium system is guaranteed to be entangled when system is cooled down below the entanglement temperature TE. By virtue of this concept we exploit the minimum separable state energy and entanglement temperature TE of the bilinear-biquadratic antiferromagnetic spin-1 chain model. We numerically calculate TE for arbitrary values of the strength of biquadratic exchange interaction Q up to N=7. We find TE decreases with Q for fixed N when Q is between -3 and 1/3 (J = 1). In this regime TE also decreases with N for fixed Q and varies slowly for large N. While the thermal system is always entangled when Q is smaller than -3.展开更多
The polarizabilities and hyperpolarizabilities of the tetrahydropyrrole diradical in different electronic states have been investigated using ab initio and density functional theory (DFT) methods combined with the f...The polarizabilities and hyperpolarizabilities of the tetrahydropyrrole diradical in different electronic states have been investigated using ab initio and density functional theory (DFT) methods combined with the finite field (FF) approach. The polarizability average value as is a maximum for the singlet state, while that for the closed-shell is a minimum. The trend in second hyperpolarizability average value yis in good agreement with that for as The yvalues of the singlet and triplet states are, respectively, about 3 and 2 times larger than that of the closed-shell. The order of the first hyperpolarizability total effective value βtot is βot (closed shell) βtot (singlet) 〉 βtot (triplet). The as, βtot, and 7 values of different electronic states obtained using the B3LYP and MP4SDQ methods are close to those obtained using the reliable CCSD method. The nonlinear optical (NLO) properties of two systems isoelectronic with the tetrahydropyrrole diradical-cyclopentane and tetrahydrofuran diradicalsshow that the polarizabilities and hyperpolarizabilities of these systems are all smaller than those of the tetrahydropyrrole diradical in the three electronic states.展开更多
文摘Making use of the method of few-body physics, the energy spectrum of a four-electron system consisting in a vertically coupled double-layer quantum dot as a function of the strength ofa magnetic field is investigated. Discontinuous ground-state transitions induced by an external magnetic field are shown. We find that, in the strong coupling case, the ground-state transitions depend not only on the external magnetic field B but also on the distance d between double-layer quantum dots. However, in the case of weak coupling, the ground-state transitions occur in the new sequence of the values of the magic angular momentum. Hence, the interlayer separation d and electron-electron interaction strongly affect the ground state of the coupled quantum dots.
基金The project supported by the National Fundamental Research Program under Grant No. 2006CB0L0106, National Natural Science Foundation of China under Grant Nos. 60433050, 10325521, and 10447106, and the SRFDP Program of Education Ministry of China and Beijing Education Committee under Grant No. XK100270454
文摘A measuring-basis encrypted quantum key distribution scheme is proposed by using twelve nonorthogohal states in a four-state system and the measuring-basis encryption technique. In this scheme, two bits of classical information can be encoded on one four-state particle and the transmitted particles can be fully used.
基金supported by the Natural Science Foundation of Hunan Province under Grant No.06JJ50118
文摘We propose a scheme for realization a quantum Controlled-NOT gate operation using two four-level atoms through a selective atom cavity interaction in cavity quantum electrodynamics system. In our protocol, the quantum information is encoded on the stable ground states of the two atoms. During the interaction between atoms and single-mode vacuum cavity-field, the atomic spontaneous emission is negligible as the large atom-cavity detuning effectively suppresses the spontaneous decay of the atoms. The influences of the dissipation and the deviation of interaction time on fidelity and corresponding success probability of the quantum Controlled-NOT gate and the experimental feasibility of our proposal are also discussed.
文摘We investigate the entanglement transfer in a four-qubit system and calculate the concurrence between any two qubits in different initial states. We show that both the pure entangled state and mixed entangled state can be transferred. For some special coupling constants and some evolution time, entanglement can be completely transferred from one pair particles to another.
基金The project supported in part by National Natural Science Foundation of China unde.r Grant Nos. 10634060, 10575040, and 90503010 Acknowledgments The authors would like to thank professor Ying WU for helpful discussion and his encouragement.
文摘We theoretically investigate the features of two-photon absorption in a coherently driven four-level atomic system with closed-loop configuration. It is found that two-photon absorption can be completely suppressed just by properly adjusting the relative phase of four coherent low-intensity driving fields and the atomic system becomes trans- parent against two-photon absorption. From a physical point of view, we explicitly explain these results in terms of quantum interference induced by two different two-photon excitation channels.
基金Supported by the Research Starting Funds of Tianjin Polytechnic University under Grant Nos.20080033 and 20070010
文摘Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ofthese two types of schemes by considering that they can be classified into nine possible level styles as the second-ordersub-schemes using laser fields.Further we point out the complexity of their more than one hundred realistic configurationsas the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments.Throughoutthis paper we review which configurations have been studied in some research aspects and which ones not,accordingto our knowledge,in order to be propitious to next steps of theoretical and experimental investigations,especially forapplications in the fields of quantum optics,quantum information science,laser spectroscopy,and so on.
基金The project supported by the National Fundamental Research Program of China under Grant No. 2001CB309310 and National Natural Science Foundation of China under Grant No. 60573008.We are grateful to MA Xiao-San and CA0 Ya for helpful discussions.
文摘Energy is introduced as an entanglement witness to describe the entanglement property of a quantum system. The thermal equilibrium system is guaranteed to be entangled when system is cooled down below the entanglement temperature TE. By virtue of this concept we exploit the minimum separable state energy and entanglement temperature TE of the bilinear-biquadratic antiferromagnetic spin-1 chain model. We numerically calculate TE for arbitrary values of the strength of biquadratic exchange interaction Q up to N=7. We find TE decreases with Q for fixed N when Q is between -3 and 1/3 (J = 1). In this regime TE also decreases with N for fixed Q and varies slowly for large N. While the thermal system is always entangled when Q is smaller than -3.
基金supported by the National Natural Science Foundation of China (20873017)the Program for Changjiang Scholars and Innovative Research Teams in University (IRT0714)
文摘The polarizabilities and hyperpolarizabilities of the tetrahydropyrrole diradical in different electronic states have been investigated using ab initio and density functional theory (DFT) methods combined with the finite field (FF) approach. The polarizability average value as is a maximum for the singlet state, while that for the closed-shell is a minimum. The trend in second hyperpolarizability average value yis in good agreement with that for as The yvalues of the singlet and triplet states are, respectively, about 3 and 2 times larger than that of the closed-shell. The order of the first hyperpolarizability total effective value βtot is βot (closed shell) βtot (singlet) 〉 βtot (triplet). The as, βtot, and 7 values of different electronic states obtained using the B3LYP and MP4SDQ methods are close to those obtained using the reliable CCSD method. The nonlinear optical (NLO) properties of two systems isoelectronic with the tetrahydropyrrole diradical-cyclopentane and tetrahydrofuran diradicalsshow that the polarizabilities and hyperpolarizabilities of these systems are all smaller than those of the tetrahydropyrrole diradical in the three electronic states.