Several numerical methods of differential equations and their applications in ballistic calculation are discussed for the purpose of simplification of the dynamic differential equations of projectile trajectory.Progra...Several numerical methods of differential equations and their applications in ballistic calculation are discussed for the purpose of simplification of the dynamic differential equations of projectile trajectory.Program simulations of Euler method,Heun method,lassic fourth-order Runge Kutta(RK4)method,ABM method and Hamming method are achieved based on Matlab.In addtion,the approximate solutions,local truncation errors and calculation time of the dynamic differential equations are obtained.By analyzing the simultaion results,the advantages and disadvantages of these methods are compared,which provides a basis for choice of ballistic calculation methods.展开更多
The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparis...The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.展开更多
The present study deals with the introduction of an alteration in Legendre wavelets method by availing of the Picard iteration method for system of differential equations and named it Legendre wavelet-Picard method (...The present study deals with the introduction of an alteration in Legendre wavelets method by availing of the Picard iteration method for system of differential equations and named it Legendre wavelet-Picard method (LWPM). Convergence of the proposed method is also discussed. In order to check the competence of the proposed method, basic enzyme kinetics is considered. Systems of nonlinear ordinary differential equations are formed from the considered enzyme-substrate reaction. The results obtained by the proposed LWPM are compared with the numerical results obtained from Runge-Kutta method of order four (RK-4). Numerical results and those obtained by LWPM are in excellent conformance, which would be explained by the help of table and figures. The proposed method is easy and simple to implement as compared to the other existing analytical methods used for solving systems of differential equations arising in biology, physics and engineering.展开更多
文摘Several numerical methods of differential equations and their applications in ballistic calculation are discussed for the purpose of simplification of the dynamic differential equations of projectile trajectory.Program simulations of Euler method,Heun method,lassic fourth-order Runge Kutta(RK4)method,ABM method and Hamming method are achieved based on Matlab.In addtion,the approximate solutions,local truncation errors and calculation time of the dynamic differential equations are obtained.By analyzing the simultaion results,the advantages and disadvantages of these methods are compared,which provides a basis for choice of ballistic calculation methods.
文摘The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.
文摘The present study deals with the introduction of an alteration in Legendre wavelets method by availing of the Picard iteration method for system of differential equations and named it Legendre wavelet-Picard method (LWPM). Convergence of the proposed method is also discussed. In order to check the competence of the proposed method, basic enzyme kinetics is considered. Systems of nonlinear ordinary differential equations are formed from the considered enzyme-substrate reaction. The results obtained by the proposed LWPM are compared with the numerical results obtained from Runge-Kutta method of order four (RK-4). Numerical results and those obtained by LWPM are in excellent conformance, which would be explained by the help of table and figures. The proposed method is easy and simple to implement as compared to the other existing analytical methods used for solving systems of differential equations arising in biology, physics and engineering.