Single-crystalline Li-doped Co3O4 truncated octahedra with different doping contents were synthesized by a simple combustion method with the fuel of multi-walled carbon nanotubes(MWCNTs).Controlled experiments showed ...Single-crystalline Li-doped Co3O4 truncated octahedra with different doping contents were synthesized by a simple combustion method with the fuel of multi-walled carbon nanotubes(MWCNTs).Controlled experiments showed that the pristine well-defined Co3O4 octahedra were obtained with exposed surfaces of {111} planes without lithium doping.In comparison with the octahedra,the truncated Co3O4 octahedra were composed of original {111} planes and extra {100} planes.It could be attributable to the selective adsorption of lithium ions on the {100} planes,making these planes with higher surface energy coexist with the crystal faces of {111}.Furthermore,the Li-doped truncated octahedra and undoped octahedra were used as catalysts in CO oxidation and as anode materials for Li-ion batteries(LIBs).The measurements exhibited that the Li-doped octahedra with added {100} crystal faces showed improved catalytic activity and electrochemical property because of the exposure of the higher energy faces of {100} and enhanced conductivity by Li doping.展开更多
基金supported by China National Funds for Distinguished Young Scientists (Grant No. 50725208)National Natural Science Foundation of China (Grant Nos. 11079002,20973019,and 51102005)+2 种基金Research Fund for the Doctoral Program of Higher Education of China (Grant No.20101102120045)Beijing Natural Science Foundation (Grant No.2113048)the Fundamental Research Funds for the Central Universities
文摘Single-crystalline Li-doped Co3O4 truncated octahedra with different doping contents were synthesized by a simple combustion method with the fuel of multi-walled carbon nanotubes(MWCNTs).Controlled experiments showed that the pristine well-defined Co3O4 octahedra were obtained with exposed surfaces of {111} planes without lithium doping.In comparison with the octahedra,the truncated Co3O4 octahedra were composed of original {111} planes and extra {100} planes.It could be attributable to the selective adsorption of lithium ions on the {100} planes,making these planes with higher surface energy coexist with the crystal faces of {111}.Furthermore,the Li-doped truncated octahedra and undoped octahedra were used as catalysts in CO oxidation and as anode materials for Li-ion batteries(LIBs).The measurements exhibited that the Li-doped octahedra with added {100} crystal faces showed improved catalytic activity and electrochemical property because of the exposure of the higher energy faces of {100} and enhanced conductivity by Li doping.