Conversion of cellulose into platform chemical 5-hydroxymethylfurfural (HMF) in water-tetrahydrofuran (THF) co-solvents under acidic condition was studied. 38.6% of HMF was obtained with low cellulose concentratio...Conversion of cellulose into platform chemical 5-hydroxymethylfurfural (HMF) in water-tetrahydrofuran (THF) co-solvents under acidic condition was studied. 38.6% of HMF was obtained with low cellulose concentration of 2.4wt%, but levulinic acid (LA) and solid humins became the main products with high cellulose concentration. The soluble byproducts were analyzed by high performance liquid chromatography/multiple stage tandem mass spec-trometry, and chemicals with formula of C9H16O4、 C10H14O4、 C11H12O4、C12H10O5 and C12H16O8 were detected. THF could participate in the reaction via ring-opening into 1,4-butanediol followed by esterification with LA into C9H16O4 or etherification with HMF into C10H14O4. C11H12O4 was formed by esterification of HMF with LA, C12H10O5 was formed by self-etherification of HMF, while C12H16O8 was formed by acetalization of HMF with glucose. Self-etherification of HMF and etherification of HMF with 1,4-butanediol were identified as two main side reactions.展开更多
基金This work was supported by the National Basic Research Program of China (No.2012CB215304), the National Natural Science Foundation of China (No.51376185 and No.51161140331), and the Natural Science Foundation of Guangdong Province (No.S2013010011612).
文摘Conversion of cellulose into platform chemical 5-hydroxymethylfurfural (HMF) in water-tetrahydrofuran (THF) co-solvents under acidic condition was studied. 38.6% of HMF was obtained with low cellulose concentration of 2.4wt%, but levulinic acid (LA) and solid humins became the main products with high cellulose concentration. The soluble byproducts were analyzed by high performance liquid chromatography/multiple stage tandem mass spec-trometry, and chemicals with formula of C9H16O4、 C10H14O4、 C11H12O4、C12H10O5 and C12H16O8 were detected. THF could participate in the reaction via ring-opening into 1,4-butanediol followed by esterification with LA into C9H16O4 or etherification with HMF into C10H14O4. C11H12O4 was formed by esterification of HMF with LA, C12H10O5 was formed by self-etherification of HMF, while C12H16O8 was formed by acetalization of HMF with glucose. Self-etherification of HMF and etherification of HMF with 1,4-butanediol were identified as two main side reactions.