期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
四氧化锰加重水基聚磺钻井液研究 被引量:5
1
作者 郑力会 张立波 魏志林 《钻井液与完井液》 CAS 北大核心 2007年第2期11-12,共2页
国外现场应用表明,对于密度在1.6g/cm^3以上的加重油基钻井液,用四氧化锰代替重晶石粉加重,能降低钻井液的当量循环密度。通过用黑锰矿粉、重晶石粉、超细碳酸钙和铁矿粉加重水基聚磺钻井液密度至1.6g/cm^3,测定了4种加重钻井液... 国外现场应用表明,对于密度在1.6g/cm^3以上的加重油基钻井液,用四氧化锰代替重晶石粉加重,能降低钻井液的当量循环密度。通过用黑锰矿粉、重晶石粉、超细碳酸钙和铁矿粉加重水基聚磺钻井液密度至1.6g/cm^3,测定了4种加重钻井液在1.2~1.6g/cm^3之间5个密度点的表观黏度和塑性黏度,分析了表观黏度和塑性黏度的变化趋势。模拟计算出了井深为4150m时的当量循环密度,表明黑锰矿粉在密度为1.46g/cm^3以上可以获得低于其它加重材料的当量循环密度。 展开更多
关键词 钻井液添加剂 四氧化锰 加重材料 钻井液 当量循环密度
下载PDF
生物炭负载锰掺杂纳米四氧化三铁吸附除锑研究
2
作者 闫敏琪 杨勇 +1 位作者 杨淳轲 史惠祥 《水处理技术》 CAS CSCD 北大核心 2024年第5期41-46,共6页
为提升晶态铁系金属氧化物的吸附容量、提高对印染废水中高溶解度和稳定性的Sb(OH)_(6)^(-)去除效果,制备生物炭负载锰掺杂纳米四氧化三铁,探究其吸附效果与联用生物炭负载提升吸附容量的机理。吸附实验表明,在初始pH为7.0±0.5、温... 为提升晶态铁系金属氧化物的吸附容量、提高对印染废水中高溶解度和稳定性的Sb(OH)_(6)^(-)去除效果,制备生物炭负载锰掺杂纳米四氧化三铁,探究其吸附效果与联用生物炭负载提升吸附容量的机理。吸附实验表明,在初始pH为7.0±0.5、温度25℃、初始锑浓度200μg/L条件下,吸附剂除锑的最优条件为锰铁比0.3、负载比0.2、投加量0.3 g/L,此时模拟废水中锑含量可降至38μg/L,在更低投加量、更温和pH、室温条件下有更高的吸附容量。且吸附剂的循环使用性能较好,经三个吸附-脱附循环后吸附量仍达86%。吸附容量机理研究发现,生物炭负载提升吸附容量的机理为缓解团聚、提高吸附剂表面带正电强度、增强其对Sb(OH)_(6)^(-)的离子交换吸附作用。 展开更多
关键词 印染废水 吸附 生物炭负载掺杂纳米氧化三铁
下载PDF
世界锰矿石深加工技术的发展 被引量:18
3
作者 谭柱中 《中国锰业》 1997年第4期30-34,共5页
对世界各国锰质合金生产技术的几大发展进行了总结,分析了锰盐的生产现状,并就合成二氧化锰生产中的技术进步和四氧化三锰产品的市场与技术发展方向进行了较为详尽的论述。
关键词 矿石 深加工技术 氧化 氧化
下载PDF
Overcharge performance of LiMn_2O_4/graphite battery with large capacity 被引量:3
4
作者 刘云建 李新海 +3 位作者 郭华军 王志兴 胡启阳 彭文杰 《Journal of Central South University》 SCIE EI CAS 2009年第5期763-767,共5页
The LiMn2O4/grapbite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn2O4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and... The LiMn2O4/grapbite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn2O4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and morphology of the powders were characterized by XRD and SEM technique, respectively. The battery explodes after 3 C/10 V overcharged test, and surface temperature of the battery case arrives at 290 ℃ in 12 s after exploding. Black air is given out with blast. Carbon, MnO, and Li2CO3 are observed in the exploded powders. The cathode electrode remains spinel structure with 5.0 V charged. Cracks in the cathode electrode particles are detected with the increase of voltage by SEM technique. The 5.0 V charged electrode can decompose into Mn3O4 at 400 ℃. It is demonstrated that the decomposition of 5.0 V charged electrode can be promoted and Mn^4+ can be deoxidized to Mn^2+ by carbon and electrolyte through the simulation of blast process. 展开更多
关键词 LIMN2O4 MNO BATTERY OVERCHARGE BLAST
下载PDF
Electrochemical Performance and ex situ Analysis of ZnMn2O4 Nanowires as Anode Materials for Lithium Rechargeable Batteries 被引量:7
5
作者 Sung-Wook Kim Hyun-Wook Lee +4 位作者 Pandurangan Muralidharan Dong-Hwa Seo Won-Sub Yoon Do Kyung Kim Kisuk Kang 《Nano Research》 SCIE EI CAS CSCD 2011年第5期505-510,共6页
One-dimensional ZnMn2O4 nanowires have been prepared and investigated as anode materials in Li rechargeable batteries. The highly crystalline ZnMn2O4 nanowires about 15 nm in width and 500 nm in length showed a high s... One-dimensional ZnMn2O4 nanowires have been prepared and investigated as anode materials in Li rechargeable batteries. The highly crystalline ZnMn2O4 nanowires about 15 nm in width and 500 nm in length showed a high specific capacity of about 650 mAh.g-1 at a current rate of 100 mA.g-1 after 40 cycles. They also exhibited high power capability at elevated current rates, i.e., 450 and 350 mAh.g 1 at current rates of 500 and 1000 mA.g 1, respectively. Formation of Mn3O4 and ZnO phases was identified by ex situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies after the initial discharge-charge cycle, which indicates that the ZnMn2O4 phase was converted to a nanocomposite of Mn3O4 and ZnO phases immediately after the electrochemical conversion reaction. 展开更多
关键词 Energy storage lithium rechargeable battery ANODE ZnMn204 NANOWIRE
原文传递
Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries 被引量:16
6
作者 张晶晶 余爱水 《Science Bulletin》 SCIE EI CAS CSCD 2015年第9期823-838,M0003,I0007,共18页
The exploration for post-carbon electrode ma- terials for lithium-ion batteries has been a crucial way to satisfy the ever-growing demands for better performance with higher energy/power densities, enhanced safety, an... The exploration for post-carbon electrode ma- terials for lithium-ion batteries has been a crucial way to satisfy the ever-growing demands for better performance with higher energy/power densities, enhanced safety, and longer cycle life. Transition metal oxides have recently re- ceived a great deal of attention as very promising anode materials due to their high theoretical capacity, good safety, eco-benignity, and huge abundance. The present work re- views the latest advances in developing novel transition metal oxides, including FeeO3, Fe3O4, CO3O4, CoO, NiO, MnO, Mn203, Mn3O4, MnO2, MOO3, Cr2O3, Nb2O5, and some binary oxides such as NiCO2O4, ZnCO2O4, MnCO2O4 and CoMn2O4. Nanostructuring and hybrid strategies ap- plicable to transition metal oxides are summarized and analyzed. Furthermore, the impacts of binder choice and heat treatment on electrochemical performance are discussed. 展开更多
关键词 Lithium-ion battery Anode material Transition metal oxide Nanostructure
原文传递
Facile construction of quasi 1D trimanganese tetraoxide nanostructures via soft templating
7
作者 WANG Ning CAO Xia GUO Lin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第11期1958-1962,共5页
Self-assembly of nanocrystals can not only lead to a better understanding of inter-particle acting force, but also enable rational building of complex and functional materials for future nanodevices. Here by utilizing... Self-assembly of nanocrystals can not only lead to a better understanding of inter-particle acting force, but also enable rational building of complex and functional materials for future nanodevices. Here by utilizing polyvinylpyrrolidone (PVP) as the as capping and structure directing agents, hierarchical Mn304 architectures involving coil-like nanorings, hexagonal nanoframes, and nanodisks are conveniently synthesized by a one-pot solution method. The sophisticated assemblies are proven to be me- diated by the PVP soft templates formed at varied concentrations. The driving forces of self-assembled complex nanostructures and the unique role of PVP concentration are discussed. Magnetic properties of the as assembled Mn3O4 rings are also studied by a SQUID system, which shows the typical side effect of Curie temperature. 展开更多
关键词 MN3O4 SELF-ASSEMBLY soft template MAGNETISM
原文传递
Metal Oxide/graphene composite anode materials for lithium-ion batteries
8
作者 LIANG JunFei ZHOU Jing GUO Lin 《Science Foundation in China》 CAS 2013年第1期59-72,共14页
Metal oxides, such as SnO2, Fe2O3, Fe3O4, CoO, Co3O4, NiO, CuO, Cu2O, MnO, Mn3O4, MnO2. etc. , are promising anode materi- als for lithium-ion batteries (LIBs) due to their high capacity and safety characteristics. ... Metal oxides, such as SnO2, Fe2O3, Fe3O4, CoO, Co3O4, NiO, CuO, Cu2O, MnO, Mn3O4, MnO2. etc. , are promising anode materi- als for lithium-ion batteries (LIBs) due to their high capacity and safety characteristics. However, the commercial utility of metal oxide anodes has been hindered to date by their poor cycling per- formance. Recent study shows that metal oxide/ graphene composites show fascinating cycling per- formance as anode materials for lABs. In this re- view, we summarize the state of research on prepa- ration of metal oxide/graphene composites and their I.i storage performance. The prospects and future challenges of metal oxide/graphene compos- ites anode materials for lABs are also discussed. 展开更多
关键词 Metal oxides GRAPHENE Anode mate-rials I.ithium-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部