We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapo...We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapor of 87 Rb. Moreover we discuss interactions of multi-dressed states. The experimental results agree well with the theoretical analysis.展开更多
Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we pres...Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steadystate approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips(i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference.展开更多
文摘We have demonstrated the Autler-Townes (AT) splitting of the four-wave mixing (FWM) process and the six-wave mixing (SWM) process in an elec tromag netically induced transparency (EIT) window in five-level atomic vapor of 87 Rb. Moreover we discuss interactions of multi-dressed states. The experimental results agree well with the theoretical analysis.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274132,11547208the Science Foundation of China Three Gorges University
文摘Discerning electromagnetically induced transparency(EIT) from Autler–Townes splitting(ATS) is a significant issue in quantum optics and has attracted wide attention in various three-level configurations. Here we present a detailed study of EIT and ATS in a five-level atomic system considered to be composed of a four-level Y-type subsystem and a three-level Λ-type subsystem. In our theoretical calculations with standard density matrix formalism and steadystate approximation, we obtain the general analytical expression of the first-order matrix element responsible for the probe-field absorption. In light of the well-known three-level EIT and ATS criteria, we numerically show an intersection of EIT with ATS for the Y-type subsystem. Furthermore, we show that an EIT dip is sandwiched between two ATS dips(i.e., multi-dip mixture of EIT and ATS) in the absorption line for the five-level system, which can be explained by the dressed-state theory and Fano interference.