期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
线弹性动力学的某些一般定理及广义与广义分区变分原理
1
作者 邢京堂 郑兆昌 《应用数学和力学》 EI CSCD 北大核心 1992年第9期795-810,共16页
从四维空间思想出发,在四种时端条件下,系统地推导得出了弹性动力学有关的一般定理,如:可能功作用量原理,虚位移原理,虚应力一动量原理,互易定理及由此导出的位移互等定理与始末时刻条件关系定理等;得出了线弹性动力学的位能作用量变分... 从四维空间思想出发,在四种时端条件下,系统地推导得出了弹性动力学有关的一般定理,如:可能功作用量原理,虚位移原理,虚应力一动量原理,互易定理及由此导出的位移互等定理与始末时刻条件关系定理等;得出了线弹性动力学的位能作用量变分原理,余能作用量变分原理,动力问题的胡-鹫原理,H-R原理及本构关系变分原理.Hamilton原理,Toupin原理及有关文献如[5]、[17]~[24]的工作均可作为文中一般结果的特例.对应于有限元分析.在空间分区,时间分区及时空均分区情况.给出了动力学问题的分区位能作用量原理.分区余能作用量原理,分区混合能作用量原理及相应的分区广义变变分原理.导出了分区原理的一般形式.若去掉时间维及有关量,文中有关结果可转化为静力问题中有关的相应结果. 展开更多
关键词 变分原理 弹性动力学 四维域边值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部