In order to obtain high efficiency of organic light-emitting diodes and organic solar cells,a series of DPP-based four-coordinate organoboron compounds have been designed for photoelectric functional materials.The eff...In order to obtain high efficiency of organic light-emitting diodes and organic solar cells,a series of DPP-based four-coordinate organoboron compounds have been designed for photoelectric functional materials.The effects of electron-donating and-withdrawing substituent on the electronic and optical properties have been investigated by using density functional theory(DFT)and time-dependent DFT(TD-DFT)approaches systematically.It turned out that electron-donating and-withdrawing groups can tune effectively the frontier molecular orbital(FMO)energy level,energy gap,and absorption and fluorescence spectra.The introduction of electron-withdrawing groups for the parent molecule HBDPP(2,5-bis(diphenylboryl)-3,6-bis(pyridin-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione)favors the decrease for the FMO energy(E_(LUMO)and E_(HOMO)),HOMO-LUMO gaps(E_(g)),and the downhill energetic driving force(ΔEL-L),while the electron-donating groups can increase E_(LUMO),E_(HOMO),E_(g),andΔEL-L compared with that of HBDPP,respectively.The absorption and fluorescence spectra of the electron-withdrawing substituted derivatives exhibit bathochromic shifts,while the absorption and fluorescence spectra of the electrondonating substituted derivatives show hypsochromic shifts compared with the parent molecule HBDPP,respectively.Furthermore,the stronger the electron-withdrawing/donating ability of group is,the more significant the effect in the optoelectronic properties.展开更多
基金the National Natural Science Foundation of China(21563002)the Natural Science Foundation of Inner Mongolia Autonomous Region(2021LHMS02001)the Research Program of Sciences at Universities of Inner Mongolia Autonomous Region(NJZY21175)
文摘In order to obtain high efficiency of organic light-emitting diodes and organic solar cells,a series of DPP-based four-coordinate organoboron compounds have been designed for photoelectric functional materials.The effects of electron-donating and-withdrawing substituent on the electronic and optical properties have been investigated by using density functional theory(DFT)and time-dependent DFT(TD-DFT)approaches systematically.It turned out that electron-donating and-withdrawing groups can tune effectively the frontier molecular orbital(FMO)energy level,energy gap,and absorption and fluorescence spectra.The introduction of electron-withdrawing groups for the parent molecule HBDPP(2,5-bis(diphenylboryl)-3,6-bis(pyridin-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione)favors the decrease for the FMO energy(E_(LUMO)and E_(HOMO)),HOMO-LUMO gaps(E_(g)),and the downhill energetic driving force(ΔEL-L),while the electron-donating groups can increase E_(LUMO),E_(HOMO),E_(g),andΔEL-L compared with that of HBDPP,respectively.The absorption and fluorescence spectra of the electron-withdrawing substituted derivatives exhibit bathochromic shifts,while the absorption and fluorescence spectra of the electrondonating substituted derivatives show hypsochromic shifts compared with the parent molecule HBDPP,respectively.Furthermore,the stronger the electron-withdrawing/donating ability of group is,the more significant the effect in the optoelectronic properties.