Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the secon...Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.展开更多
In this paper, we propose a compound algorithm for the image restoration. The algorithm is a convex combination of the ROF model and the LLT model with a parameter function 0. The numerical experiments demonstrate tha...In this paper, we propose a compound algorithm for the image restoration. The algorithm is a convex combination of the ROF model and the LLT model with a parameter function 0. The numerical experiments demonstrate that our compound algorithm is efficient and preserves the main advantages of the two models. In particular, the errors of the compound algorithm in L2 norm between the exact images and corresponding restored images are the smallest among the three models. For images with strong noises, the restored images of the compound algorithm are the best in the corresponding restored images. The proposed algorithm combines the fixed point method, an improved AMG method and the Krylov acceleration. It is found that the combination of these methods is efficient and robust in the image restoration.展开更多
The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonc...The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.展开更多
基金The National Natural Science Foundation of China(No.60972001)the National Key Technology R&D Program of China during the 11th Five-Year Period(No.2009BAG13A06)
文摘Due to the fact that the fourth-order partial differential equation (PDE) for noise removal can provide a good trade-off between noise removal and edge preservation and avoid blocky effects often caused by the second-order PDE, a domain-based fourth-order PDE method for noise removal is proposed. First, the proposed method segments the image domain into two domains, a speckle domain and a non-speckle domain, based on the statistical properties of isolated speckles in the Laplacian domain. Then, depending on the domain type, different conductance coefficients in the proposed fourth-order PDE are adopted. Moreover, the frequency approach is used to determine the optimum iteration stopping time. Compared with the existing fourth-order PDEs, the proposed fourth-order PDE can remove isolated speckles and keeps the edges from being blurred. Experimental results show the effectiveness of the proposed method.
基金suppprt from NSFC of China,Singapore NTU project SUG 20/07,MOE Grant T207B2202NRF2007IDMIDM002-010
文摘In this paper, we propose a compound algorithm for the image restoration. The algorithm is a convex combination of the ROF model and the LLT model with a parameter function 0. The numerical experiments demonstrate that our compound algorithm is efficient and preserves the main advantages of the two models. In particular, the errors of the compound algorithm in L2 norm between the exact images and corresponding restored images are the smallest among the three models. For images with strong noises, the restored images of the compound algorithm are the best in the corresponding restored images. The proposed algorithm combines the fixed point method, an improved AMG method and the Krylov acceleration. It is found that the combination of these methods is efficient and robust in the image restoration.
基金supported by National Natural Science Foundation of China (Grant No.11101415)the National Center for Mathematics and Interdisciplinary Sciences,CAS
文摘The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.