In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certa...In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certain sense. Then, using the Fourier method the equivalent problem is reduced to solving the system of integral equations. The existence and uniqueness of a solution to the system of integral equation is proved by the contraction mapping principle. This solution is also the unique solution to the equivalent problem. Finally, by equivalence, the theorem of existence and uniqueness of a classical solution to the given problem is proved.展开更多
基金The National Natural Science Foundation of China(11101253)the Fundamental Research Funds for the Central Universities(GK201503016)the Science Program of Education Department of Shaanxi Province(14JK1461)
基金Supported by Natural Science Foundation of China(10571174)Grant from Jiangsu Education Committee of China(08KJB110009)the Foundation of Yunnan Education Committee of China(08Y0144)
文摘In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certain sense. Then, using the Fourier method the equivalent problem is reduced to solving the system of integral equations. The existence and uniqueness of a solution to the system of integral equation is proved by the contraction mapping principle. This solution is also the unique solution to the equivalent problem. Finally, by equivalence, the theorem of existence and uniqueness of a classical solution to the given problem is proved.