期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种面向工业应用的机器人回位方法
1
作者 侯龙潇 《机械制造与自动化》 2024年第4期235-240,286,共7页
针对工业机器人作业过程中非正常停机引起位姿处于未知状态而导致机器人无法从停机位置自动返回初始位置的问题,提出一种工业机器人的回位方法。设计机器人回位路径,结合k-近邻算法、构造回位空间以及空间分类阈值对机器人的位姿信息进... 针对工业机器人作业过程中非正常停机引起位姿处于未知状态而导致机器人无法从停机位置自动返回初始位置的问题,提出一种工业机器人的回位方法。设计机器人回位路径,结合k-近邻算法、构造回位空间以及空间分类阈值对机器人的位姿信息进行分类化处理;重构机器人特征数据进行决策树模型的训练;使用训练完成的模型决策回位路径后执行机器人回位程序,实现工业机器人自动返回初始位。回位试验实验结果表明:在随机位姿和携带多样工具的状态下机器人回位成功率为93.3%。 展开更多
关键词 工业机器人 回位方法 空间构造 路径设计 决策树算法 K-近邻算法
下载PDF
Composite quantile regression estimation for P-GARCH processes 被引量:1
2
作者 ZHAO Biao CHEN Zhao +1 位作者 TAO GuiPing CHEN Min 《Science China Mathematics》 SCIE CSCD 2016年第5期977-998,共22页
We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH mo... We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator.The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions.The proposed methodology is also illustrated by Va R on stock price data. 展开更多
关键词 composite quantile regression periodic GARCH process strictly periodic stationarity strong consistency asymptotic normality
原文传递
Efficient Quantile Estimation for Functional-Coefficient Partially Linear Regression Models
3
作者 Zhangong ZHOU Rong JIANG Weimin QIAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第5期729-740,共12页
The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear sche... The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear scheme and the integrated method are used to obtain Focal quantile estimators of all unknown functions in the FCPLR model. These resulting estimators are asymptotically normal, but each of them has big variance. To reduce variances of these quantile estimators, the one-step backfitting technique is used to obtain the efficient quantile estimators of all unknown functions, and their asymptotic normalities are derived. Two simulated examples are carried out to illustrate the proposed estimation methodology. 展开更多
关键词 Functional-coefficient model Quantile regression Local linear method Backfitting technique Asymptotic normality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部