As the core of a digital phased array radar system,a radar signal processing environment is created to measure multitarget range and velocity information. The radar echo signal is achieved by superposing target echo, ...As the core of a digital phased array radar system,a radar signal processing environment is created to measure multitarget range and velocity information. The radar echo signal is achieved by superposing target echo, noise, clutter and jamming signals linearly. Considering that these signals have many types,two typical combinations are selected to construct the multi-target echo signal and the simulated echo signal is used as the input of the signal processing environment. This environment mainly adopts pulse compression,moving target indication and detection technologies to process the echo signal.It is found that the frequency domain method is more desirable for the pulse compression effect than the time domain method,and multi-target range information can be measured from the moving target indication result after using a double delay canceller. A new moving target detecting method is proposed,which can present the positive and negative velocity accurately with the multi-target range and velocity measured simultaneously. Simulation results indicate that the potential targets are detected from the chaotic radar echo signals successfully,and their range and velocity can be figured out correctly in the built radar signal processing environment.展开更多
Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhau...Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhaust heat energy.Engine exhaust pulse flow can significantly affect the turbine performance of turbocharging and turbogenerating systems,and it is necessary to consider the pulse flow effects in turbine design and performance analysis.An investigation was carried out by numerical simulation on the mixed flow turbine pulse flow performance and flow fields.Results showed that the variations of the turbine efficiency and flowfiled under pulsating flow conditions demonstrate significant unsteady effects.The effect of blade leading edge sweep on turbine pulse flow performance was studied.It is shown that increasing of the leading edge sweep angle can improve the turbine average instantaneous efficiency by about 2 percent under pulsating flow conditions.展开更多
基金The"13th Five-Year"Equipment Pre-Research Common Technology Fund of China(No.41411010202)the National Natural Science Foundation of China(No.61571113)the Natural Science Foundation of Jiangsu Province(No.BK20160697)
文摘As the core of a digital phased array radar system,a radar signal processing environment is created to measure multitarget range and velocity information. The radar echo signal is achieved by superposing target echo, noise, clutter and jamming signals linearly. Considering that these signals have many types,two typical combinations are selected to construct the multi-target echo signal and the simulated echo signal is used as the input of the signal processing environment. This environment mainly adopts pulse compression,moving target indication and detection technologies to process the echo signal.It is found that the frequency domain method is more desirable for the pulse compression effect than the time domain method,and multi-target range information can be measured from the moving target indication result after using a double delay canceller. A new moving target detecting method is proposed,which can present the positive and negative velocity accurately with the multi-target range and velocity measured simultaneously. Simulation results indicate that the potential targets are detected from the chaotic radar echo signals successfully,and their range and velocity can be figured out correctly in the built radar signal processing environment.
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2011CB707204)the National Natural Science Foundation of China(Grant No.50706020)
文摘Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhaust heat energy.Engine exhaust pulse flow can significantly affect the turbine performance of turbocharging and turbogenerating systems,and it is necessary to consider the pulse flow effects in turbine design and performance analysis.An investigation was carried out by numerical simulation on the mixed flow turbine pulse flow performance and flow fields.Results showed that the variations of the turbine efficiency and flowfiled under pulsating flow conditions demonstrate significant unsteady effects.The effect of blade leading edge sweep on turbine pulse flow performance was studied.It is shown that increasing of the leading edge sweep angle can improve the turbine average instantaneous efficiency by about 2 percent under pulsating flow conditions.