Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the t...Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling.展开更多
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil...The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.展开更多
Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiomet...Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiometer (Analytical Spectral Devices, Inc., USA) under laboratory condition. Partial least square regression (PLSR) models were constructed for predicting soil metal concentrations. The data pre-processing methods, first and second derivatives (FD and SD), baseline correction (BC), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR), were used for the spectral reflectance data pretreatments. Then, the prediction results were evaluated by relative root mean square error (RRMSE) and coefficients of determination (R 2 ). According to the criteria of minimal RRMSE and maximal R 2 , the PLSR models with the FD pretreatment (RRMSE = 0.24, R 2 = 0.61), SNV pretreatment (RRMSE = 0.08, R 2 = 0.78), and BC-pretreatment (RRMSE = 0.20, R 2 = 0.41) were considered as the final models for predicting As, Fe, and Cu, respectively. Wavebands at around 460, 1 400, 1 900, and 2 200 nm were selected as important spectral variables to construct final models. In conclusion, concentrations of heavy metals in contaminated soils could be indirectly assessed by soil spectra according to the correlation between the spectrally featureless components and Fe; therefore, spectral reflectance would be an alternative tool for monitoring soil heavy metals contamination.展开更多
The effects of previous cowpea (Vignaunguiculata) and annual fallow on N recoveries, succeeding sorghum yields and soil properties were studied using a 5-year-old (1995-1999) field experiment at Kouar6 (11°5...The effects of previous cowpea (Vignaunguiculata) and annual fallow on N recoveries, succeeding sorghum yields and soil properties were studied using a 5-year-old (1995-1999) field experiment at Kouar6 (11°59′ North, 0°19′ West and 850 m altitude) in Burkina Faso. A 3 4 factorial design in a split plot arrangement with three rotation treatments and four fertilizer treatments was used. Total N uptake by succeeding sorghum increased from 26 kg N ha~ in mono cropping of sorghum to 31 and 48 kg N ha~ when sorghum was rotated with fallow or cowpea respectively. Nitrogen derived from fertilizer increased from 10% in mono cropping of sorghum to 22% and 26% when sorghum was rotated with fallow or cowpea respectively. While fallow did not increase N derived from soil, cowpea doubled the quantity of N derived from soil (Ndfs). Sorghum grain yields increased from 75% and 100% when sorghum was rotated with fallow or cowpea respectively. All rotations treatments decreased soil organic C and N but soil organic C was the highest in fallow-sorghum rotation. It was concluded that cowpea-sorghum rotation was more effective than fallow-sorghum rotation and five management options were suggested to improve traditional system productivity.展开更多
The adaptive neuro-fuzzy inference systems(ANFIS)are widely used in the concrete technology.In this research,the compressive strength of light weight concrete was determined.To this end,the scoria percentage and curin...The adaptive neuro-fuzzy inference systems(ANFIS)are widely used in the concrete technology.In this research,the compressive strength of light weight concrete was determined.To this end,the scoria percentage and curing day variables were used as the input parameters,and compressive strength and tensile strength were used as the output parameters.In addition,100 patterns were used,70%of which were used for training and 30%were used for testing.To assess the precision of the neuro-fuzzy system,it was compared using two linear regression models.The comparisons were carried out in the training and testing phases.Research results revealed that the neuro-fuzzy systems model offers more potential,flexibility,and precision than the statistical models.展开更多
Allometric models are necessary for estimating biomass in terrestrial ecosystems. Generalized allometric relationship exists for many tropical trees, but species- and region-specific models are often lacking. We devel...Allometric models are necessary for estimating biomass in terrestrial ecosystems. Generalized allometric relationship exists for many tropical trees, but species- and region-specific models are often lacking. We developed species-specific allometric models to predict aboveground biomass for 11 native tree species of the Sudanian savanna- woodlands. Diameters at the base and at breast height, with species means ranging respectively from 11 to 28 cm and 9 to 19 cm, and the height of the trees were used as predictor variables. Sampled trees spanned a wide range of sizes including the largest sizes these species can reach. As a response variable, the biomass of the trees was obtained through destructive sampling of 4 754 trees during wood harvesting. We used a stepwise multiple regression analysis with backward elimination procedure to develop models separately predicting, total biomass of the trees, stem biomass, and biomass of branches and twigs. All species- specific regression models relating biomass with measured tree dimen- sions were highly significant (p 〈 0.001). The biomass of branches and twigs was less predictable compared to stem biomass and total biomass, although their models required fewer predictors and predictor interac- tions. The best-fit equations for total above-ground biomass and stem biomass bad R2 〉 0.70, except for the Acacia species; for branches including twig biomass, R2-values varied from 0.749 for Anogeissus leiocarpa to 0.183 for Acacia macrostachya. The use of these equations in estimating available biomass will avoid destructive sampling, and aid in planning for sustainable use of these species.展开更多
Soil visible-near infrared diffuse reflectance spectroscopy(vis-NIR DRS)has become an important area of research in the fields of remote and proximal soil sensing.The technique is considered to be particularly useful ...Soil visible-near infrared diffuse reflectance spectroscopy(vis-NIR DRS)has become an important area of research in the fields of remote and proximal soil sensing.The technique is considered to be particularly useful for acquiring data for soil digital mapping,precision agriculture and soil survey.In this study,1581 soil samples were collected from 14 provinces in China,including Tibet,Xinjiang,Heilongjiang,and Hainan.The samples represent 16 soil groups of the Genetic Soil Classification of China.After air-drying and sieving,the diffuse reflectance spectra of the samples were measured under laboratory conditions in the range between 350 and 2500 nm using a portable vis-NIR spectrometer.All the soil spectra were smoothed using the Savitzky-Golay method with first derivatives before performing multivariate data analyses.The spectra were compressed using principal components analysis and the fuzzy k-means method was used to calculate the optimal soil spectral classification.The scores of the principal component analyses were classified into five clusters that describe the mineral and organic composition of the soils.The results on the classification of the spectra are comparable to the results of other similar research.Spectroscopic predictions of soil organic matter concentrations used a combination of the soil spectral classification with multivariate calibration using partial least squares regression(PLSR).This combination significantly improved the predictions of soil organic matter(R2=0.899;RPD=3.158)compared with using PLSR alone(R2=0.697;RPD=1.817).展开更多
基金Project(50490270) supported by the National Natural Science Foundation of China
文摘Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling.
基金Project(51878078)supported by the National Natural Science Foundation of ChinaProject(2018-025)supported by the Training Program for High-level Technical Personnel in Transportation Industry,ChinaProject(CTKY-PTRC-2018-003)supported by the Design Theory,Method and Demonstration of Durability Asphalt Pavement Based on Heavy-duty Traffic Conditions in Shanghai Area,China。
文摘The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation.
基金Project supported by the National Natural Science Foundation of China (No. 40571130)the Natural Science Foundation of Shanghai, China (No. 07ZR14032)
文摘Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiometer (Analytical Spectral Devices, Inc., USA) under laboratory condition. Partial least square regression (PLSR) models were constructed for predicting soil metal concentrations. The data pre-processing methods, first and second derivatives (FD and SD), baseline correction (BC), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR), were used for the spectral reflectance data pretreatments. Then, the prediction results were evaluated by relative root mean square error (RRMSE) and coefficients of determination (R 2 ). According to the criteria of minimal RRMSE and maximal R 2 , the PLSR models with the FD pretreatment (RRMSE = 0.24, R 2 = 0.61), SNV pretreatment (RRMSE = 0.08, R 2 = 0.78), and BC-pretreatment (RRMSE = 0.20, R 2 = 0.41) were considered as the final models for predicting As, Fe, and Cu, respectively. Wavebands at around 460, 1 400, 1 900, and 2 200 nm were selected as important spectral variables to construct final models. In conclusion, concentrations of heavy metals in contaminated soils could be indirectly assessed by soil spectra according to the correlation between the spectrally featureless components and Fe; therefore, spectral reflectance would be an alternative tool for monitoring soil heavy metals contamination.
文摘The effects of previous cowpea (Vignaunguiculata) and annual fallow on N recoveries, succeeding sorghum yields and soil properties were studied using a 5-year-old (1995-1999) field experiment at Kouar6 (11°59′ North, 0°19′ West and 850 m altitude) in Burkina Faso. A 3 4 factorial design in a split plot arrangement with three rotation treatments and four fertilizer treatments was used. Total N uptake by succeeding sorghum increased from 26 kg N ha~ in mono cropping of sorghum to 31 and 48 kg N ha~ when sorghum was rotated with fallow or cowpea respectively. Nitrogen derived from fertilizer increased from 10% in mono cropping of sorghum to 22% and 26% when sorghum was rotated with fallow or cowpea respectively. While fallow did not increase N derived from soil, cowpea doubled the quantity of N derived from soil (Ndfs). Sorghum grain yields increased from 75% and 100% when sorghum was rotated with fallow or cowpea respectively. All rotations treatments decreased soil organic C and N but soil organic C was the highest in fallow-sorghum rotation. It was concluded that cowpea-sorghum rotation was more effective than fallow-sorghum rotation and five management options were suggested to improve traditional system productivity.
文摘The adaptive neuro-fuzzy inference systems(ANFIS)are widely used in the concrete technology.In this research,the compressive strength of light weight concrete was determined.To this end,the scoria percentage and curing day variables were used as the input parameters,and compressive strength and tensile strength were used as the output parameters.In addition,100 patterns were used,70%of which were used for training and 30%were used for testing.To assess the precision of the neuro-fuzzy system,it was compared using two linear regression models.The comparisons were carried out in the training and testing phases.Research results revealed that the neuro-fuzzy systems model offers more potential,flexibility,and precision than the statistical models.
基金provided by Swedish International Development Cooperation Agency (Sida)
文摘Allometric models are necessary for estimating biomass in terrestrial ecosystems. Generalized allometric relationship exists for many tropical trees, but species- and region-specific models are often lacking. We developed species-specific allometric models to predict aboveground biomass for 11 native tree species of the Sudanian savanna- woodlands. Diameters at the base and at breast height, with species means ranging respectively from 11 to 28 cm and 9 to 19 cm, and the height of the trees were used as predictor variables. Sampled trees spanned a wide range of sizes including the largest sizes these species can reach. As a response variable, the biomass of the trees was obtained through destructive sampling of 4 754 trees during wood harvesting. We used a stepwise multiple regression analysis with backward elimination procedure to develop models separately predicting, total biomass of the trees, stem biomass, and biomass of branches and twigs. All species- specific regression models relating biomass with measured tree dimen- sions were highly significant (p 〈 0.001). The biomass of branches and twigs was less predictable compared to stem biomass and total biomass, although their models required fewer predictors and predictor interac- tions. The best-fit equations for total above-ground biomass and stem biomass bad R2 〉 0.70, except for the Acacia species; for branches including twig biomass, R2-values varied from 0.749 for Anogeissus leiocarpa to 0.183 for Acacia macrostachya. The use of these equations in estimating available biomass will avoid destructive sampling, and aid in planning for sustainable use of these species.
基金This project was funded in part by the National High Technology Research and Development Program (Grant No. 2013AA102301)the program for New Century Talents in University (Grant No. NCET-10-0694), and the National Natural Science Foundation of China (Grant No. 41271234)
文摘Soil visible-near infrared diffuse reflectance spectroscopy(vis-NIR DRS)has become an important area of research in the fields of remote and proximal soil sensing.The technique is considered to be particularly useful for acquiring data for soil digital mapping,precision agriculture and soil survey.In this study,1581 soil samples were collected from 14 provinces in China,including Tibet,Xinjiang,Heilongjiang,and Hainan.The samples represent 16 soil groups of the Genetic Soil Classification of China.After air-drying and sieving,the diffuse reflectance spectra of the samples were measured under laboratory conditions in the range between 350 and 2500 nm using a portable vis-NIR spectrometer.All the soil spectra were smoothed using the Savitzky-Golay method with first derivatives before performing multivariate data analyses.The spectra were compressed using principal components analysis and the fuzzy k-means method was used to calculate the optimal soil spectral classification.The scores of the principal component analyses were classified into five clusters that describe the mineral and organic composition of the soils.The results on the classification of the spectra are comparable to the results of other similar research.Spectroscopic predictions of soil organic matter concentrations used a combination of the soil spectral classification with multivariate calibration using partial least squares regression(PLSR).This combination significantly improved the predictions of soil organic matter(R2=0.899;RPD=3.158)compared with using PLSR alone(R2=0.697;RPD=1.817).