Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-...Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-1 s-1 and at the temperatures of 600?1000℃.Dynamic recovery and dynamic recrystallization of NiTi SMA were systematically investigated by microstructural evolution.The influence of the strain rates,the deformation temperatures and the deformation degree on the dynamic recovery and dynamic recrystallization of NiTi SMA was obtained as well.NiTi SMA was characterized by the combination of dynamic recovery and dynamic recrystallization at 600℃ and 700℃,but the complete dynamic recrystallization occurred at other deformation temperatures.Increasing the deformation temperatures or decreasing the stain rates leads to larger equiaxed grains.The deformation degree has an important influence on the dynamic recrystallization of NiTi SMA.There exists the critical deformation degree during the dynamic recrystallization of NiTi SMA,beyond which the larger deformation degree contributes to obtaining the finer equiaxed grains.展开更多
The microstructure and mechanical properties of 105 mm thick 5083 aluminum alloy hot rolled plate were investigated by metallurgical microscope, scanning electron microscope and tensile testing machine, and three majo...The microstructure and mechanical properties of 105 mm thick 5083 aluminum alloy hot rolled plate were investigated by metallurgical microscope, scanning electron microscope and tensile testing machine, and three major characteristic problems in mechanical properties inhomogeneity were explained. The results show that the mechanical properties of the rolled plate are inhomogeneous along the thickness direction. From the surface to the center, the strength shows an inverted "N" shape change and the elongation presents a semi "U" shape change. Several similar structural units composed of long fibrous grains(LFG) and short fibrous grains bands(SFGB) exist in a special layer(Layer 2) adjacent to the surface. This alternating layered distribution of LFG and SFGB is conducive to improving the plasticity by dispersing the plastic deformation concentrated on the boundary line(BL) between them. However, their different deformability will cause the alternation of additional stresses during the hot rolling, leading to the strength reduction. The closer the location to the center of the plate is, the more likely the recovery rather than the recrystallization occurs. This is the possible reason for the unnegligible difference in strength near the central region(Layer 4 and Layer 5).展开更多
基金Project(51071056) supported by the National Natural Science Foundation of ChinaProjects(HEUCFR1132,HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-1 s-1 and at the temperatures of 600?1000℃.Dynamic recovery and dynamic recrystallization of NiTi SMA were systematically investigated by microstructural evolution.The influence of the strain rates,the deformation temperatures and the deformation degree on the dynamic recovery and dynamic recrystallization of NiTi SMA was obtained as well.NiTi SMA was characterized by the combination of dynamic recovery and dynamic recrystallization at 600℃ and 700℃,but the complete dynamic recrystallization occurred at other deformation temperatures.Increasing the deformation temperatures or decreasing the stain rates leads to larger equiaxed grains.The deformation degree has an important influence on the dynamic recrystallization of NiTi SMA.There exists the critical deformation degree during the dynamic recrystallization of NiTi SMA,beyond which the larger deformation degree contributes to obtaining the finer equiaxed grains.
基金Project(2011DFR50950)supported by the International Science and Technology Cooperation Program of ChinaProject(51971183)supported by the National Natural Science Foundation of ChinaProject(cstc2019jcyj-msxmX0594)supported by the Natural Science Foundation of Chongqing,China。
文摘The microstructure and mechanical properties of 105 mm thick 5083 aluminum alloy hot rolled plate were investigated by metallurgical microscope, scanning electron microscope and tensile testing machine, and three major characteristic problems in mechanical properties inhomogeneity were explained. The results show that the mechanical properties of the rolled plate are inhomogeneous along the thickness direction. From the surface to the center, the strength shows an inverted "N" shape change and the elongation presents a semi "U" shape change. Several similar structural units composed of long fibrous grains(LFG) and short fibrous grains bands(SFGB) exist in a special layer(Layer 2) adjacent to the surface. This alternating layered distribution of LFG and SFGB is conducive to improving the plasticity by dispersing the plastic deformation concentrated on the boundary line(BL) between them. However, their different deformability will cause the alternation of additional stresses during the hot rolling, leading to the strength reduction. The closer the location to the center of the plate is, the more likely the recovery rather than the recrystallization occurs. This is the possible reason for the unnegligible difference in strength near the central region(Layer 4 and Layer 5).