The stochastic simulation algorithm (SSA) accurately depicts spatially homogeneous wellstirred chemically reacting systems with small populations of chemical species and properly represents noise, but it is often ab...The stochastic simulation algorithm (SSA) accurately depicts spatially homogeneous wellstirred chemically reacting systems with small populations of chemical species and properly represents noise, but it is often abandoned when modeling larger systems because of its computational complexity. In this work, a twin support vector regression based stochastic simulations algorithm (TS^3A) is proposed by combining the twin support vector regression and SSA, the former is a well-known robust regression method in machine learning. Numerical results indicate that this proposed algorithm can be applied to a wide range of chemically reacting systems and obtain significant improvements on efficiency and accuracy with fewer simulating runs over the existing methods.展开更多
The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this...The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this parameter in engineering practice.In this study,we aimed to develop a non-parametric ensemble artificial intelligence(AI)approach to calculate the Es of soft clay in contrast to the traditional regression models proposed in previous studies.A gradient boosted regression tree(GBRT)algorithm was used to discern the non-linear pattern between input variables and the target response,while a genetic algorithm(GA)was adopted for tuning the GBRT model's hyper-parameters.The model was tested through 10-fold cross validation.A dataset of 221 samples from 65 engineering survey reports from Shanghai infrastructure projects was constructed to evaluate the accuracy of the new model5 s predictions.The mean squared error and correlation coefficient of the optimum GBRT model applied to the testing set were 0.13 and 0.91,respectively,indicating that the proposed machine learning(ML)model has great potential to improve the prediction of Es for soft clay.A comparison of the performance of empirical formulas and the proposed ML method for predicting foundation settlement indicated the rationality of the proposed ML model and its applicability to the compressive deformation of geotechnical systems.This model,however,cannot be directly applied to the prediction of Es in other sites due to its site specificity.This problem can be solved by retraining the model using local data.This study provides a useful reference for future multi-parameter prediction of soil behavior.展开更多
In dimensional affect recognition, the machine learning methods, which are used to model and predict affect, are mostly classification and regression. However, the annotation in the dimensional affect space usually ta...In dimensional affect recognition, the machine learning methods, which are used to model and predict affect, are mostly classification and regression. However, the annotation in the dimensional affect space usually takes the form of a continuous real value which has an ordinal property. The aforementioned methods do not focus on taking advantage of this important information. Therefore, we propose an affective rating ranking framework for affect recognition based on face images in the valence and arousal dimensional space. Our approach can appropriately use the ordinal information among affective ratings which are generated by discretizing continuous annotations.Specifically, we first train a series of basic cost-sensitive binary classifiers, each of which uses all samples relabeled according to the comparison results between corresponding ratings and a given rank of a binary classifier. We obtain the final affective ratings by aggregating the outputs of binary classifiers. By comparing the experimental results with the baseline and deep learning based classification and regression methods on the benchmarking database of the AVEC 2015 Challenge and the selected subset of SEMAINE database, we find that our ordinal ranking method is effective in both arousal and valence dimensions.展开更多
Machine learning prediction models for thin wire-based metal additive manufacturing(MAM)process were proposed,aiming at the complex relationship between the process parameters and the geometric characteristics of sing...Machine learning prediction models for thin wire-based metal additive manufacturing(MAM)process were proposed,aiming at the complex relationship between the process parameters and the geometric characteristics of single track of the deposition layer and surface roughness.The effects of laser power,wire feeding speed and scanning speed on the width and height of the single track and surface roughness were experimentally studied.The results show that laser power has a significant impact on the width of the single track but little effect on the height.As the wire feeding speed increases,the width and height of the single track increase,especially the height.The faster the scanning speed,the smaller the width of the single track,while the height does not change much.Then,support vector regression(SVR)and artificial neural network(ANN)regression methods were employed to set up prediction models.The SVR and ANN regression models perform well in predicting the width,with a smaller root mean square error and a higher correlation coefficient R2.Compared with the ANN model,the SVR model performs better both in predicting geometric characteristics of single track and surface roughness.Multi-layer thin-walled parts were manufactured to verify the accuracy of the models.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.30871341), the National High-Tech Research and Development Program of China (No.2006AA02-Z190), the Shanghai Leading Academic Discipline Project (No.S30405), and the Natural Science Foundation of Shanghai Normal University (No.SK200937).
文摘The stochastic simulation algorithm (SSA) accurately depicts spatially homogeneous wellstirred chemically reacting systems with small populations of chemical species and properly represents noise, but it is often abandoned when modeling larger systems because of its computational complexity. In this work, a twin support vector regression based stochastic simulations algorithm (TS^3A) is proposed by combining the twin support vector regression and SSA, the former is a well-known robust regression method in machine learning. Numerical results indicate that this proposed algorithm can be applied to a wide range of chemically reacting systems and obtain significant improvements on efficiency and accuracy with fewer simulating runs over the existing methods.
基金the National Natural Science Foundation of China(Nos.51608380 and 51538009)the Key Innovation Team Program of the Innovation Talents Promotion Plan by Ministry of Science and Technology of China(No.2016RA4059)the Specific Consultant Research Project of Shanghai Tunnel Engineering Company Ltd.(No.STEC/KJB/XMGL/0130),China。
文摘The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this parameter in engineering practice.In this study,we aimed to develop a non-parametric ensemble artificial intelligence(AI)approach to calculate the Es of soft clay in contrast to the traditional regression models proposed in previous studies.A gradient boosted regression tree(GBRT)algorithm was used to discern the non-linear pattern between input variables and the target response,while a genetic algorithm(GA)was adopted for tuning the GBRT model's hyper-parameters.The model was tested through 10-fold cross validation.A dataset of 221 samples from 65 engineering survey reports from Shanghai infrastructure projects was constructed to evaluate the accuracy of the new model5 s predictions.The mean squared error and correlation coefficient of the optimum GBRT model applied to the testing set were 0.13 and 0.91,respectively,indicating that the proposed machine learning(ML)model has great potential to improve the prediction of Es for soft clay.A comparison of the performance of empirical formulas and the proposed ML method for predicting foundation settlement indicated the rationality of the proposed ML model and its applicability to the compressive deformation of geotechnical systems.This model,however,cannot be directly applied to the prediction of Es in other sites due to its site specificity.This problem can be solved by retraining the model using local data.This study provides a useful reference for future multi-parameter prediction of soil behavior.
基金supported by the National Natural Science Foundation of China(Nos.61272211 and 61672267)the Open Project Program of the National Laboratory of Pattern Recognition(No.201700022)+1 种基金the China Postdoctoral Science Foundation(No.2015M570413)and the Innovation Project of Undergraduate Students in Jiangsu University(No.16A235)
文摘In dimensional affect recognition, the machine learning methods, which are used to model and predict affect, are mostly classification and regression. However, the annotation in the dimensional affect space usually takes the form of a continuous real value which has an ordinal property. The aforementioned methods do not focus on taking advantage of this important information. Therefore, we propose an affective rating ranking framework for affect recognition based on face images in the valence and arousal dimensional space. Our approach can appropriately use the ordinal information among affective ratings which are generated by discretizing continuous annotations.Specifically, we first train a series of basic cost-sensitive binary classifiers, each of which uses all samples relabeled according to the comparison results between corresponding ratings and a given rank of a binary classifier. We obtain the final affective ratings by aggregating the outputs of binary classifiers. By comparing the experimental results with the baseline and deep learning based classification and regression methods on the benchmarking database of the AVEC 2015 Challenge and the selected subset of SEMAINE database, we find that our ordinal ranking method is effective in both arousal and valence dimensions.
基金173 Basic Strengthening ProgramXi'an Science and Technology Plan(21ZCZZHXJS-QCY6-0002)。
文摘Machine learning prediction models for thin wire-based metal additive manufacturing(MAM)process were proposed,aiming at the complex relationship between the process parameters and the geometric characteristics of single track of the deposition layer and surface roughness.The effects of laser power,wire feeding speed and scanning speed on the width and height of the single track and surface roughness were experimentally studied.The results show that laser power has a significant impact on the width of the single track but little effect on the height.As the wire feeding speed increases,the width and height of the single track increase,especially the height.The faster the scanning speed,the smaller the width of the single track,while the height does not change much.Then,support vector regression(SVR)and artificial neural network(ANN)regression methods were employed to set up prediction models.The SVR and ANN regression models perform well in predicting the width,with a smaller root mean square error and a higher correlation coefficient R2.Compared with the ANN model,the SVR model performs better both in predicting geometric characteristics of single track and surface roughness.Multi-layer thin-walled parts were manufactured to verify the accuracy of the models.