在渔业资源评估中,CPUE(catch per unit effort)标准化是基础性工作。一般线性模型(generalized linear model,GLM)已成为CPUE标准化的基本方法,但GLM模型在误差结构、自变量的选择、缺失数据、复杂交互效应及异常值处理等方面仍然缺乏...在渔业资源评估中,CPUE(catch per unit effort)标准化是基础性工作。一般线性模型(generalized linear model,GLM)已成为CPUE标准化的基本方法,但GLM模型在误差结构、自变量的选择、缺失数据、复杂交互效应及异常值处理等方面仍然缺乏灵活性。本文基于模拟数据及我国东、黄海鲐鱼(Scomber japonicus)灯光围网渔业数据,比较和分析了基于GLM模型与回归树模型在CPUE标准化中的效果。研究表明:当渔业数据不存在非线性关系与异常值时,GLM模型与回归树模型均能较好地对CPUE进行标准化,但由于回归树模型具有阶跃函数特征,因而GLM模型更具优势;在非线性关系及异常值存在的条件下,回归树模型对CPUE的标准化具有相对较小的估计误差,模型更简约、有效。由于回归树模型能可视化显示自变量与应变量间的复杂关系,因此,更有利于探索和分析渔业数据。展开更多
文摘在渔业资源评估中,CPUE(catch per unit effort)标准化是基础性工作。一般线性模型(generalized linear model,GLM)已成为CPUE标准化的基本方法,但GLM模型在误差结构、自变量的选择、缺失数据、复杂交互效应及异常值处理等方面仍然缺乏灵活性。本文基于模拟数据及我国东、黄海鲐鱼(Scomber japonicus)灯光围网渔业数据,比较和分析了基于GLM模型与回归树模型在CPUE标准化中的效果。研究表明:当渔业数据不存在非线性关系与异常值时,GLM模型与回归树模型均能较好地对CPUE进行标准化,但由于回归树模型具有阶跃函数特征,因而GLM模型更具优势;在非线性关系及异常值存在的条件下,回归树模型对CPUE的标准化具有相对较小的估计误差,模型更简约、有效。由于回归树模型能可视化显示自变量与应变量间的复杂关系,因此,更有利于探索和分析渔业数据。