期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于支持向量机的高速铁路电能质量数据分类方法研究
1
作者 杨岑玉 王同勋 《智能电网》 2014年第1期34-38,共5页
针对电能质量监测系统的海量多特征数据信息,提出采用基于支持向量机的回归特征消去法进行特征选择,综合支持向量机对不同的电能质量特征集的分类正确率选取了最优特征集。以高速铁路电能质量数据为例,利用该方法对有无高铁负荷运行进... 针对电能质量监测系统的海量多特征数据信息,提出采用基于支持向量机的回归特征消去法进行特征选择,综合支持向量机对不同的电能质量特征集的分类正确率选取了最优特征集。以高速铁路电能质量数据为例,利用该方法对有无高铁负荷运行进行了分类研究。实验结果表明,所选出的特征集反映了高铁电能质量特点并具有很好的分类效果,证明了所提方法的可行性,为电能质量数据挖掘分类提供了一种思路和方法。 展开更多
关键词 电能质量 支持向量机 回归特征消去法 特征选择 分类
下载PDF
Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification 被引量:4
2
作者 毛勇 皮道映 +1 位作者 刘育明 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期65-72,共8页
Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i... Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application. 展开更多
关键词 variable selection support vector machine recursive feature elimination fault diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部