期刊文献+
共找到3,838篇文章
< 1 2 192 >
每页显示 20 50 100
基于DRNN神经网络的造纸过程定量水分解耦控制分析 被引量:2
1
作者 郑敏 《集成电路应用》 2024年第1期365-367,共3页
阐述造纸过程定量水分的控制技术,利用Matlab建立定量水分数学模型,分别采用常规PID算法和DRNN神经网络算法对定量水分耦合模型进行解耦控制,探讨神经网络来整定PID控制器参数,不依赖控制对象的数学模型就可以实现解耦控制。仿真结果表... 阐述造纸过程定量水分的控制技术,利用Matlab建立定量水分数学模型,分别采用常规PID算法和DRNN神经网络算法对定量水分耦合模型进行解耦控制,探讨神经网络来整定PID控制器参数,不依赖控制对象的数学模型就可以实现解耦控制。仿真结果表明,DRNN神经网络算法响应速度更快,自适应能力显著增强,可进一步改善系统的动态性能。 展开更多
关键词 智能控制 定量水分数学模型 drnn神经网络算法
下载PDF
基于自回归小波神经网络的机械臂自适应滑模控制
2
作者 杨佳 吴佩林 +2 位作者 杨理 寇东山 余斌 《空间控制技术与应用》 CSCD 北大核心 2024年第3期68-76,共9页
针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种... 针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种非奇异终端滑模面.利用多组自回归小波神经网络(self-recurrent wavelet neural network, SRWNN)分块逼近系统未知的动力学模型参数,并采用自适应更新律调整权重.通过积分控制项补偿SRWNN的逼近误差,并使用Lyapunov稳定性理论证明了系统稳定性.使用MATLAB进行仿真分析,分块SRWNN滑模控制与滑模控制、整体SRWNN滑模控制相比,关节角度跟踪误差的平均稳态误差分别降低了31.9%、76.5%,表明此方法是一种可靠、有效的轨迹跟踪控制方法. 展开更多
关键词 回归小波神经网络 非奇异终端滑模 动力学模型 轨迹跟踪
下载PDF
基于回归分析和GA-BP神经网络算法的3D打印件弯曲性能预测
3
作者 白鹤 杨鑫 +4 位作者 杨瑞琦 刘亚明 赵峥璇 庞瑞 何石磊 《工程塑料应用》 CAS CSCD 北大核心 2024年第1期89-94,共6页
为进一步探究熔融沉积成型(FDM)3D打印参数和制件弯曲性能之间的关系,创建合理的FDM 3D打印制件弯曲强度预测模型。根据正交试验L_(16)(4^(5))的设计原则和神经网络算法模型的构建要求,按照不同分层高度、填充密度、打印温度、打印速度... 为进一步探究熔融沉积成型(FDM)3D打印参数和制件弯曲性能之间的关系,创建合理的FDM 3D打印制件弯曲强度预测模型。根据正交试验L_(16)(4^(5))的设计原则和神经网络算法模型的构建要求,按照不同分层高度、填充密度、打印温度、打印速度以及外壳厚度五种因素,制备25组试验试样,并进行弯曲性能检测。随后通过建立GA-BP神经网络模型、传统BP神经网络模型以及多元回归方程模型,分别对FDM 3D打印制件弯曲性能进行预测,并将预测数据与试验测试数据进行对比。通过对比发现,GA-BP神经网络模型预测数据与试验测试数据更为接近,其平均误差为3.71%,且误差值整体波动最小,BP神经网络模型与多元回归方程模型预测精度相差不大,BP神经网络模型预测平均误差为8.05%,多元回归方程模型预测平均误差为9.07%,但多元回归方程误差值整体波动最大。因此,采用GA遗传算法优化后的BP神经网络模型在进行FDM 3D打印制件弯曲性能预测方面具有更高的精度和更良好的稳定性。 展开更多
关键词 回归分析 GA-BP神经网络 3D打印 弯曲性能 预测
下载PDF
基于稳健回归和卷积神经网络的中压窃电类型检测方法
4
作者 陈敏 张逸 +4 位作者 邹阳 辛荣 张良羽 高琛 林华 《电网技术》 EI CSCD 北大核心 2024年第11期4729-4738,I0077-I0080,I0076,共15页
目前传统的窃电检测方法只能识别用户是否存在窃电,而无法针对各类型窃电用户进行快速准确稽查。针对中压用户具有用电量大、用电较为规律的特点,该文提出一种基于稳健回归和卷积神经网络的中压配电线路窃电类型检测方法。首先,考虑到... 目前传统的窃电检测方法只能识别用户是否存在窃电,而无法针对各类型窃电用户进行快速准确稽查。针对中压用户具有用电量大、用电较为规律的特点,该文提出一种基于稳健回归和卷积神经网络的中压配电线路窃电类型检测方法。首先,考虑到受通信延迟中断等因素影响存在非正常数据的情况,采用稳健回归算法减小其影响,提高回归分析精度;其次,将回归所得的各用户修正系数及误差项作为用户窃电特征,输入卷积神经网络模型进行训练,以完成窃电类型识别;最后,通过仿真和实测数据进行该文方法的验证。结果表明,在不同扰动条件下,该文方法能准确识别不同类型窃电行为,能够更好地辅助现场排查,缩小排查范围,提高查实率。 展开更多
关键词 窃电检测 稳健回归 中压配电线路 神经网络 智能电表
下载PDF
基于多任务循环神经网络带状回归模型的乳腺癌个体生存分析
5
作者 陈睿 蔡念 +2 位作者 罗智浩 刘璇 黎剑 《广东工业大学学报》 CAS 2024年第1期34-40,共7页
针对乳腺癌病程长、疾病发展较缓和的特点,提出了一种多任务循环神经网络带状回归模型进行乳腺癌个体生存分析。首先,提出一种基于循环神经网络的多任务带状回归模型,通过识别各病理特征对不同患者之间影响的区别,优化患者个体生存分析... 针对乳腺癌病程长、疾病发展较缓和的特点,提出了一种多任务循环神经网络带状回归模型进行乳腺癌个体生存分析。首先,提出一种基于循环神经网络的多任务带状回归模型,通过识别各病理特征对不同患者之间影响的区别,优化患者个体生存分析。其次,对带状校验矩阵的形式进行拓展并研究其对患者风险分布的影响。最后,在乳腺癌真实数据集上进行生存分析,不同患者之间产生明显的差异性,验证了模型的有效性。在2个乳腺癌真实数据集上进行的生存分析结果显示,基于循环神经网络的多任务带状回归模型的一致性指数(Concordance Index, C-index)较医学上常用的Cox回归模型有较大提升,并有着更小的95%置信区间。 展开更多
关键词 乳腺癌 个体生存分析 循环神经网络 多任务带状回归
下载PDF
广义回归神经网络修正GNSS垂向坐标时间序列环境负荷效应
6
作者 高菡 匡翠林 楚彬 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第9期3357-3366,共10页
环境负荷通常会引起GNSS垂向坐标时间序列发生非线性变化,对其影响进行精细改正是GNSS坐标时间序列研究中的一项重要内容.传统的物理模型环境负荷改正方法在模型建立与参数求解等过程中需引入部分简化与近似,导致改正不够精细.本文引入... 环境负荷通常会引起GNSS垂向坐标时间序列发生非线性变化,对其影响进行精细改正是GNSS坐标时间序列研究中的一项重要内容.传统的物理模型环境负荷改正方法在模型建立与参数求解等过程中需引入部分简化与近似,导致改正不够精细.本文引入数据驱动的广义回归神经网络(Generalized Regression Neural Network,GRNN)方法改善环境负荷修正效果.以川滇地区GNSS测站的垂向坐标时间序列为研究对象,首先基于变分贝叶斯独立分量分析(Variational Bayesian Independent Component Analysis,vbICA)技术分离坐标序列,分析得到周期性分量,发现大气及陆地储水负荷是引起测站坐标发生季节性变化的重要原因.然后通过GRNN建立与大气及陆地储水相关的环境因素数据和坐标时间序列数据之间的关联,进而消除坐标时间序列中两种环境负荷的影响.经数据驱动的GRNN建模修正大气及陆地储水负荷影响后,各测站坐标残差序列的RMS值平均降低了21.56%,而采用传统的物理模型方法修正后平均降低幅度仅为9.29%,可认为基于GRNN方法的改正效果更好.另外顾及地下温度、冰浓度、比湿、降雨率四种气候因素的影响建立GRNN模型,结果表明地下温度因素对川滇地区GNSS测站垂向坐标影响稍大. 展开更多
关键词 GNSS坐标时间序列 环境负荷 广义回归神经网络 数据驱动
下载PDF
基于深度自回归循环神经网络的边缘负载预测
7
作者 陈礼贤 梁杰 +3 位作者 黄一帆 陈哲毅 于正欣 陈星 《小型微型计算机系统》 CSCD 北大核心 2024年第2期359-366,共8页
为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度... 为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度变化的负载取得精确的预测.此外,这些方法通常将预测模型拟合到独立的时间序列上,进而进行单点负载实值预测.但是在实际边缘计算场景中,得到未来负载变化的概率分布情况会比直接预测未来负载的实值更具应用价值.为了解决上述问题,本文提出了一种基于深度自回归循环神经网络的边缘负载预测方法(Edge Load Prediction with Deep Auto-regressive Recurrent networks,ELP-DAR).所提出的ELP-DAR方法利用边缘负载时序数据训练深度自回归循环神经网络,将LSTM集成至S2S框架中,进而直接预测下一时间点负载概率分布的所有参数.因此,ELP-DAR方法能够高效地提取边缘负载的重要表征,学习复杂的边缘负载模式进而实现对高度变化的边缘负载精确的概率分布预测.基于真实的边缘负载数据集,通过大量仿真实验对所提出ELP-DAR方法的有效性进行了验证与分析.实验结果表明,相比于其他基准方法,所提出的ELP-DAR方法可以取得更高的预测精度,并且在不同预测长度下均展现出了优越的性能表现. 展开更多
关键词 边缘计算 负载预测 概率分布 深度自回归 循环神经网络
下载PDF
基于Runge-Kutta的自回归物理信息神经网络求解偏微分方程
8
作者 韦昌 樊昱晨 +3 位作者 周永清 张超群 刘欣 王赫阳 《力学学报》 EI CAS CSCD 北大核心 2024年第8期2482-2493,共12页
物理信息神经网络离散时间模型(PINN-RK)是深度学习技术与龙格库塔方法相结合的产物,在求解偏微分方程时具有非常出色的稳定性和较高的求解精度.但是,受到龙格库塔算法本身的限制,PINN-RK模型仅能实现单步时间预测,且计算效率较低.因此... 物理信息神经网络离散时间模型(PINN-RK)是深度学习技术与龙格库塔方法相结合的产物,在求解偏微分方程时具有非常出色的稳定性和较高的求解精度.但是,受到龙格库塔算法本身的限制,PINN-RK模型仅能实现单步时间预测,且计算效率较低.因此,为了实现多时间步长预测和提高模型的计算效率,提出了一种基于龙格库塔法的自回归物理信息神经网络模型(SR-PINN-RK).该模型基于自回归时间步进机制,改进了神经网络的训练流程和网络结构,相比PINN-RK模型,大幅减少了神经网络的训练参数,提高了模型的计算效率.此外,在自回归机制的作用下,该模型通过对标签数据的动态更新,成功实现了对偏微分方程解的多时间步长预测.为了验证文中模型的求解精度和计算效率,分别求解了Allen-Cahn方程和Burgers方程,并与文献中的基准解进行了对比.结果表明,模型预测解与基准解之间具有很高的一致性,求解Allen-Cahn方程和Burgers方程的最大相对误差均低于0.009. 展开更多
关键词 物理信息神经网络 回归时间步进机制 偏微分方程 Allen-Cahn方程 BURGERS方程
下载PDF
基于回归神经网络的卫星信号监测系统健康状态评估模型
9
作者 高丽 李洋 +3 位作者 田宇 翟建勇 麻军伟 张伟 《现代导航》 2024年第4期249-253,267,共6页
卫星信号地面监测系统无人值守、长期运行的特点,以及设备数量众多、交互复杂的现实状态使得对监测系统健康状态进行评估至关重要。通过对监测系统运行数据进行合理设计和处理,设计并训练回归神经网络学习挖掘监测系统运行数据的内在规... 卫星信号地面监测系统无人值守、长期运行的特点,以及设备数量众多、交互复杂的现实状态使得对监测系统健康状态进行评估至关重要。通过对监测系统运行数据进行合理设计和处理,设计并训练回归神经网络学习挖掘监测系统运行数据的内在规律,从而实现监测系统全生命周期内健康状态评估预测,对运行数据表达出系统出现故障隐患的状态进行识别,达到故障预警的效果,从而将监测系统的事后运维方式提前至事前运维,减少监测系统故障发生率,有利于提高监测系统稳定可靠能力。 展开更多
关键词 地面监测系统 健康状态预测 回归神经网络
下载PDF
多元线性回归模型与多层感知器神经网络在铀矿测井泥质含量预测中的应用
10
作者 张喆安 刘龙成 +2 位作者 王书黎 白云龙 谢廷婷 《铀矿地质》 CAS CSCD 2024年第5期1007-1013,共7页
在铀矿资源勘探工作中,泥质含量的测定对于确定地下岩层的性质和砂岩型铀矿床的分布具有重要意义。文章旨在避免常规测井解释计算方法受到希尔奇系数选取准确性的限制,提出了利用多元线性回归模型和多层感知器(MLP,Multilayer Perceptr... 在铀矿资源勘探工作中,泥质含量的测定对于确定地下岩层的性质和砂岩型铀矿床的分布具有重要意义。文章旨在避免常规测井解释计算方法受到希尔奇系数选取准确性的限制,提出了利用多元线性回归模型和多层感知器(MLP,Multilayer Perceptron)神经网络对测井数据进行分析与预测的方法。通过选取某地区的测井数据,采用多元线性回归模型和MLP神经网络进行了泥质含量关系模型的构建和验证。结果显示,多元线性回归模型在泥质含量低层位出现过拟合现象,而MLP神经网络则表现出更高的预测准确性,MLP神经网络在泥质含量预测中优于传统多元线性回归模型,为铀矿勘探中泥质含量的准确预测提供了有效工具,并有望改进现有的泥质含量评价方法。这些研究成果可显著提升测井解释的效率和准确性,对后续铀矿勘探开发工作的开展具有积极影响。 展开更多
关键词 铀矿测井 泥质含量 多元线性回归模型 多层感知器神经网络
下载PDF
基于线性回归及BP神经网络的RAT最大释放冲击载荷预测研究
11
作者 洪烨 王帮亭 +3 位作者 王志伟 杨溢炜 马莹 郦江 《航空计算技术》 2024年第5期53-57,共5页
冲压空气涡轮(Ram Air Turbine,RAT)最大释放冲击载荷是飞机结构设计重要参数。当前RAT释放冲击载荷的试验仅试飞或高速风洞试验可以得到,寻找一种有效的RAT最大冲击载荷预测方法很有必要。通过分析得到RAT最大释放冲击载荷的影响因素... 冲压空气涡轮(Ram Air Turbine,RAT)最大释放冲击载荷是飞机结构设计重要参数。当前RAT释放冲击载荷的试验仅试飞或高速风洞试验可以得到,寻找一种有效的RAT最大冲击载荷预测方法很有必要。通过分析得到RAT最大释放冲击载荷的影响因素与飞行高度和飞行空速有直接关系,采用线性回归及BP神经网络研究飞行高度和空速对RAT最大释放载荷的影响,并从平均绝对误差及均方根百分误差进行评价。研究将试验及仿真结果作为训练样本,训练完成后将已知输入层参数输入后预测RAT最大释放载荷。对比预测最大释放载荷与试验结果,线性回归预测值平均绝对误差及均方根百分误差小于10%,BP神经网络预测值平均绝对误差及均方根百分误差的平均值小于5%。 展开更多
关键词 冲压空气涡轮 BP神经网络 线性回归 释放冲击载荷
下载PDF
基于图神经网络链接预测与回归的新兴技术预测研究--以人工智能技术为例
12
作者 肖君超 钟福利 张金玲 《竞争情报》 2024年第5期46-56,共11页
面向专利文本数据的新兴技术预测对于协助管理者挖掘并聚焦技术发展方向、调整技术研发路线和占据技术竞赛主动具有重要意义。以人工智能技术为例,首先利用语法分析技术识别英文句子的名词短语,通过网络词语共现方法构造名词短语共现图... 面向专利文本数据的新兴技术预测对于协助管理者挖掘并聚焦技术发展方向、调整技术研发路线和占据技术竞赛主动具有重要意义。以人工智能技术为例,首先利用语法分析技术识别英文句子的名词短语,通过网络词语共现方法构造名词短语共现图。其次,构造图神经网络模型,并进行共现图链接预测和链接回归分析。最后,结合链接预测和链接回归结果,对人工智能技术进行技术预测。基于收集的专利数据进行预测实验,结果表明图神经网络融合名词短语共现图方法更适合复杂语义情形下的新兴技术预测,可获得更小预测识别粒度;此外,实验结果显示人工智能技术朝着电子会议、计算机视觉、医疗健康、交互界面、测量与监控、机器学习算法、传感器、数据通道和智能制造等方向应用发展。 展开更多
关键词 新兴技术预测 神经网络 链接预测 链接回归 名词短语
下载PDF
基于Probit回归模型和BP神经网络模型的宁夏盐池滩羊产量影响因素及预测研究
13
作者 陈翔 王劲松 +3 位作者 王晓静 闫玥 李月祥 于艳丽 《现代化农业》 2024年第2期82-84,共3页
通过对滩羊养殖户户主和家庭基本特征、养殖场生产经营特征、优质化生产认知情况以及疫病防治情况进行调查,采用Probit回归模型和BP神经网络模型分析了宁夏盐池县12个滩羊养殖村滩羊肉产量的影响因素,并预测了未来5年的滩羊肉产量情况,... 通过对滩羊养殖户户主和家庭基本特征、养殖场生产经营特征、优质化生产认知情况以及疫病防治情况进行调查,采用Probit回归模型和BP神经网络模型分析了宁夏盐池县12个滩羊养殖村滩羊肉产量的影响因素,并预测了未来5年的滩羊肉产量情况,预测结果表明到2025年,宁夏滩羊产量将达12.5万t,宁夏滩羊产业总体呈现良好的发展势头。 展开更多
关键词 Probit回归模型 BP神经网络模型 宁夏滩羊 产量影响因素 产量预测
下载PDF
基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测
14
作者 陈晓华 吴杰康 +2 位作者 张勋祥 龙泳丞 王志平 《山东电力技术》 2024年第7期1-9,共9页
针对目前电动汽车充电负荷预测精度不足的问题,提出了一种结合互补集合经验模态分解和鹈鹕优化算法优化广义回归神经网络的组合预测方法。首先,利用互补集合经验模态分解将电动汽车充电负荷时间序列分解成多个固有模态函数分量和一个残... 针对目前电动汽车充电负荷预测精度不足的问题,提出了一种结合互补集合经验模态分解和鹈鹕优化算法优化广义回归神经网络的组合预测方法。首先,利用互补集合经验模态分解将电动汽车充电负荷时间序列分解成多个固有模态函数分量和一个残差分量。其次,对于分解后的固有模态分量容易出现冗杂信息,利用样本熵对分解后数值相近的固有模态分量进行相加重构,降低冗杂程度。最后,考虑广义回归神经网络的预测效果与平滑因子的数值有很大关系,利用鹈鹕优化算法优化广义回归神经网络的平滑因子,进而对电动汽车充电负荷进行短期预测。仿真表明,所提出的预测方法可以有效地提高电动汽车充电负荷的预测精度,具有较高的实用性。 展开更多
关键词 广义回归神经网络 鹈鹕优化算法 电动汽车充电负荷 短期预测 互补集合经验模态分解
下载PDF
基于木材振动特性的月琴声学品质广义回归神经网络预测模型
15
作者 杨扬 《森林工程》 北大核心 2024年第4期160-167,共8页
泡桐木始终是制造乐器谐振元件的重要材料,对乐器的音质有着重要的影响。采用广义回归神经网络(General Regression Neural Network,GRNN)建立基于共鸣板振动性能的月琴音质评价模型。以制造出的9把月琴为研究对象,根据月琴的音质评价... 泡桐木始终是制造乐器谐振元件的重要材料,对乐器的音质有着重要的影响。采用广义回归神经网络(General Regression Neural Network,GRNN)建立基于共鸣板振动性能的月琴音质评价模型。以制造出的9把月琴为研究对象,根据月琴的音质评价以及制备月琴的共鸣板信息,提出月琴音质的预测模型。在180组数据中,随机抽取135组数据进行训练,其余45组数据进行验证。使用主成分分析方法、GRNN建立月琴声学质量评价模型,并进行仿真预测。结果表明,基于共鸣板的振动特性,利用Matlab仿真可以实现对月琴音质的预测,预测的准确率可达到91.41%。此外,研究还表明,泡桐木共鸣板的动态弹性模量、声辐射阻尼系数、弹性模量、剪切模量比、声阻抗,损耗角正切和声转化率等参数均是影响其制备成品月琴声学质量的重要因素。 展开更多
关键词 广义回归神经网络 主成分分析 声学品质 振动特性 共鸣板 木材 民族乐器
下载PDF
基于非线性自回归神经网络模型对生活垃圾产生量的预测
16
作者 朱远超 王晓燕 田光 《四川环境》 2024年第3期149-153,共5页
旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历... 旨在建立生活垃圾产生量预测模型,更好的预测生活垃圾产生量,以便有序筹划生活垃圾处置设施和构建灵活的收运调配体系。方法采用非线性自回归神经网络(NAR),通过调整延迟阶数和隐含层神经元个数等模型参数,建立基于生活垃圾产生量的历史时间序列预测模型。实验结果显示,NAR神经网络时间序列模型对于北京市生活垃圾产生量有较好的预测能力,当延迟阶数为5,隐含神经元个数为10时,预测模型测试集的r值为0.9717,平均绝对百分比误差为3.385%,均方根误差为5051.831 t/w,预测模型通过了残差序列非自相关检验,预测效果较好。结论表明针对生活垃圾产生量数据可以开展NAR神经网络模型非线性自回归预测,且可不用考虑其它相关影响因素数据的可获得性,具有一定的便利和实际应用意义。 展开更多
关键词 生活垃圾 预测模型 非线性自回归 神经网络
下载PDF
基于Logistic回归和神经网络的甘肃省道路结冰预警模型研究
17
作者 鲍丽丽 程鹏 +5 位作者 王小勇 何金梅 闫昕旸 尹春 李晓琴 赵文婧 《干旱气象》 2024年第1期137-145,共9页
为更好地开展公路交通道路结冰预报预警服务工作,利用甘肃省道路结冰高发区路段(甘肃武威以东)的交通气象站逐小时观测资料,分析道路结冰空间分布特征,探讨道路结冰与气象要素的相关性,采用Logistic回归法和神经网络算法构建道路结冰预... 为更好地开展公路交通道路结冰预报预警服务工作,利用甘肃省道路结冰高发区路段(甘肃武威以东)的交通气象站逐小时观测资料,分析道路结冰空间分布特征,探讨道路结冰与气象要素的相关性,采用Logistic回归法和神经网络算法构建道路结冰预警模型。结果表明:甘肃省道路结冰主要集中在冬季(12月至次年2月),其中00:00—10:00和22:00—23:00(北京时)出现道路结冰的频率较高。Logistic回归模型和神经网络模型对未发生结冰事件的预测准确率较高,分别为91.9%和96.2%;针对发生结冰事件,Logistic回归模型的预测准确率较低,为31.6%,而神经网络模型的预测准确率可达44.6%,说明2种模型对道路结冰预警有一定指示意义,神经网络模型预测效果优于Logistic回归模型。 展开更多
关键词 道路结冰 时空分布特征 Logistic回归 神经网络模型
下载PDF
一种基于K-means的神经网络数据集回归预测算法
18
作者 孙梦觉 田园 +1 位作者 汤吕 李珗 《科技创新与应用》 2024年第3期74-80,共7页
在智能电网研究领域的高维数据回归分析和预测模型中,传统的统计学模型不能平衡不同维度之间信息价值,影响数据集的预测有效性。为解决上述问题,提出一种基于K-means的神经网络数据集回归预测算法。首先,在特征层面上,多层循环神经网络... 在智能电网研究领域的高维数据回归分析和预测模型中,传统的统计学模型不能平衡不同维度之间信息价值,影响数据集的预测有效性。为解决上述问题,提出一种基于K-means的神经网络数据集回归预测算法。首先,在特征层面上,多层循环神经网络提取不同维度的数据特征并训练响应,然后,在算法层面上,通过K-means的分类器模型依照数据的维度特征分类并融合循环神经网络(Recurrent Neural Network,RNN)的特征响应,再对输出响应的数据集构建组合预测模型,从而提高预测算法的可靠性。在公开的回归数据集上进行测试。实验测试的结果表明,与门控循环算法(Gated Recurrent Unit,GRU)相比降低了14.45%的平均绝对误差值。 展开更多
关键词 智能电网 回归分析 神经网络 K-means分类器 多维特征
下载PDF
基于广义回归神经网络的风力发电场设备温度自适应预测方法
19
作者 张二辉 徐兴朝 +1 位作者 郑卫剑 贾政 《自动化与仪表》 2024年第10期72-75,共4页
传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因... 传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因素对应的数据,组成样本,对样本实施离群值处理和归一化处理。利用广义回归神经网络自适应预测设备温度并利用鸽群优化算法(PIO算法)自适应调整广义回归神经网络预测模型参数——平滑因子σ,提高其自适应能力。结果表明,所研究方法的预测偏度最高误差仅为0.3℃,说明该方法在预测温度时具有良好的准确性,预测值接近实际值。 展开更多
关键词 广义回归神经网络 风力发电场 设备温度 PIO算法 自适应预测方法
下载PDF
基于多元非线性回归和BP神经网络模型对黄河水沙监测数据特征分析的比较
20
作者 孔豪杰 《浙江工商职业技术学院学报》 2024年第1期18-22,共5页
利用2016-2021年黄河水位、水流量和含沙量已有的历史数据,采用三次样条插值方法,可建立多元非线性回归和BP神经网络模型。比较两种模型的误差率,进而得到BP神经网络预测精度更高(平均误差率:0.1981)。这为预测含沙量提供可靠的依据,也... 利用2016-2021年黄河水位、水流量和含沙量已有的历史数据,采用三次样条插值方法,可建立多元非线性回归和BP神经网络模型。比较两种模型的误差率,进而得到BP神经网络预测精度更高(平均误差率:0.1981)。这为预测含沙量提供可靠的依据,也为监管机关制定合理有效的检测方案提供了有力的支持。 展开更多
关键词 三次样条插值 多元非线性回归 BP神经网络 误差率
下载PDF
上一页 1 2 192 下一页 到第
使用帮助 返回顶部